TSTP Solution File: SWV064+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SWV064+1 : TPTP v8.1.0. Bugfixed v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n016.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Wed Jul 20 16:22:21 EDT 2022

% Result   : Theorem 1.77s 2.18s
% Output   : Refutation 1.77s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : SWV064+1 : TPTP v8.1.0. Bugfixed v3.3.0.
% 0.07/0.13  % Command  : bliksem %s
% 0.13/0.34  % Computer : n016.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % DateTime : Wed Jun 15 21:52:18 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.46/1.17  *** allocated 10000 integers for termspace/termends
% 0.46/1.17  *** allocated 10000 integers for clauses
% 0.46/1.17  *** allocated 10000 integers for justifications
% 0.46/1.17  Bliksem 1.12
% 0.46/1.17  
% 0.46/1.17  
% 0.46/1.17  Automatic Strategy Selection
% 0.46/1.17  
% 0.46/1.17  
% 0.46/1.17  Clauses:
% 0.46/1.17  
% 0.46/1.17  { gt( X, Y ), gt( Y, X ), X = Y }.
% 0.46/1.17  { ! gt( X, Z ), ! gt( Z, Y ), gt( X, Y ) }.
% 0.46/1.17  { ! gt( X, X ) }.
% 0.46/1.17  { leq( X, X ) }.
% 0.46/1.17  { ! leq( X, Z ), ! leq( Z, Y ), leq( X, Y ) }.
% 0.46/1.17  { ! lt( X, Y ), gt( Y, X ) }.
% 0.46/1.17  { ! gt( Y, X ), lt( X, Y ) }.
% 0.46/1.17  { ! geq( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( Y, X ), geq( X, Y ) }.
% 0.46/1.17  { ! gt( Y, X ), leq( X, Y ) }.
% 0.46/1.17  { ! leq( X, Y ), X = Y, gt( Y, X ) }.
% 0.46/1.17  { ! leq( X, pred( Y ) ), gt( Y, X ) }.
% 0.46/1.17  { ! gt( Y, X ), leq( X, pred( Y ) ) }.
% 0.46/1.17  { gt( succ( X ), X ) }.
% 0.46/1.17  { ! leq( X, Y ), leq( X, succ( Y ) ) }.
% 0.46/1.17  { ! leq( X, Y ), gt( succ( Y ), X ) }.
% 0.46/1.17  { ! gt( succ( Y ), X ), leq( X, Y ) }.
% 0.46/1.17  { ! leq( n0, X ), leq( uniform_int_rnd( Y, X ), X ) }.
% 0.46/1.17  { ! leq( n0, X ), leq( n0, uniform_int_rnd( Y, X ) ) }.
% 0.46/1.17  { ! leq( Y, X ), ! leq( X, Z ), a_select2( tptp_const_array1( dim( Y, Z ), 
% 0.46/1.17    T ), X ) = T }.
% 0.46/1.17  { ! leq( Y, X ), ! leq( X, Z ), ! leq( U, T ), ! leq( T, W ), a_select3( 
% 0.46/1.17    tptp_const_array2( dim( Y, Z ), dim( U, W ), V0 ), X, T ) = V0 }.
% 0.46/1.17  { alpha10( Y, skol1( X, Y ), skol15( X, Y ) ), ! leq( n0, Z ), ! leq( Z, Y
% 0.46/1.17     ), ! leq( n0, T ), ! leq( T, Y ), a_select3( trans( X ), Z, T ) = 
% 0.46/1.17    a_select3( trans( X ), T, Z ) }.
% 0.46/1.17  { ! a_select3( X, skol1( X, Y ), skol15( X, Y ) ) = a_select3( X, skol15( X
% 0.46/1.17    , Y ), skol1( X, Y ) ), ! leq( n0, Z ), ! leq( Z, Y ), ! leq( n0, T ), ! 
% 0.46/1.17    leq( T, Y ), a_select3( trans( X ), Z, T ) = a_select3( trans( X ), T, Z
% 0.46/1.17     ) }.
% 0.46/1.17  { ! alpha10( X, Y, Z ), alpha1( X, Y ) }.
% 0.46/1.17  { ! alpha10( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha10( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha1( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha10( X, Y, Z ) }.
% 0.46/1.17  { ! alpha1( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha1( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha1( X, Y ) }.
% 0.46/1.17  { alpha11( Y, skol2( X, Y ), skol16( X, Y ) ), ! leq( n0, Z ), ! leq( Z, Y
% 0.46/1.17     ), ! leq( n0, T ), ! leq( T, Y ), a_select3( inv( X ), Z, T ) = 
% 0.46/1.17    a_select3( inv( X ), T, Z ) }.
% 0.46/1.17  { ! a_select3( X, skol2( X, Y ), skol16( X, Y ) ) = a_select3( X, skol16( X
% 0.46/1.17    , Y ), skol2( X, Y ) ), ! leq( n0, Z ), ! leq( Z, Y ), ! leq( n0, T ), ! 
% 0.46/1.17    leq( T, Y ), a_select3( inv( X ), Z, T ) = a_select3( inv( X ), T, Z ) }
% 0.46/1.17    .
% 0.46/1.17  { ! alpha11( X, Y, Z ), alpha2( X, Y ) }.
% 0.46/1.17  { ! alpha11( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha11( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha2( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha11( X, Y, Z ) }.
% 0.46/1.17  { ! alpha2( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha2( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha2( X, Y ) }.
% 0.46/1.17  { alpha12( Y, skol3( X, Y ), skol17( X, Y ) ), ! leq( n0, Z ), ! leq( Z, Y
% 0.46/1.17     ), ! leq( n0, T ), ! leq( T, Y ), ! leq( n0, U ), ! leq( U, Y ), 
% 0.46/1.17    a_select3( tptp_update3( X, U, U, W ), Z, T ) = a_select3( tptp_update3( 
% 0.46/1.17    X, U, U, W ), T, Z ) }.
% 0.46/1.17  { ! a_select3( X, skol3( X, Y ), skol17( X, Y ) ) = a_select3( X, skol17( X
% 0.46/1.17    , Y ), skol3( X, Y ) ), ! leq( n0, Z ), ! leq( Z, Y ), ! leq( n0, T ), ! 
% 0.46/1.17    leq( T, Y ), ! leq( n0, U ), ! leq( U, Y ), a_select3( tptp_update3( X, U
% 0.46/1.17    , U, W ), Z, T ) = a_select3( tptp_update3( X, U, U, W ), T, Z ) }.
% 0.46/1.17  { ! alpha12( X, Y, Z ), alpha3( X, Y ) }.
% 0.46/1.17  { ! alpha12( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha12( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha3( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha12( X, Y, Z ) }.
% 0.46/1.17  { ! alpha3( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha3( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha3( X, Y ) }.
% 0.46/1.17  { alpha4( X, Z ), alpha22( Z, skol4( Y, Z ), skol18( Y, Z ) ), ! leq( n0, T
% 0.46/1.17     ), ! leq( T, Z ), ! leq( n0, U ), ! leq( U, Z ), a_select3( tptp_madd( X
% 0.46/1.17    , Y ), T, U ) = a_select3( tptp_madd( X, Y ), U, T ) }.
% 0.46/1.17  { alpha4( X, Z ), ! a_select3( Y, skol4( Y, Z ), skol18( Y, Z ) ) = 
% 0.46/1.17    a_select3( Y, skol18( Y, Z ), skol4( Y, Z ) ), ! leq( n0, T ), ! leq( T, 
% 0.46/1.17    Z ), ! leq( n0, U ), ! leq( U, Z ), a_select3( tptp_madd( X, Y ), T, U ) 
% 0.46/1.17    = a_select3( tptp_madd( X, Y ), U, T ) }.
% 0.46/1.17  { ! alpha22( X, Y, Z ), alpha13( X, Y ) }.
% 0.46/1.17  { ! alpha22( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha22( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha13( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha22( X, Y, Z ) }.
% 0.46/1.17  { ! alpha13( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha13( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha13( X, Y ) }.
% 0.46/1.17  { ! alpha4( X, Y ), alpha23( Y, skol5( X, Y ), skol19( X, Y ) ) }.
% 0.46/1.17  { ! alpha4( X, Y ), ! a_select3( X, skol5( X, Y ), skol19( X, Y ) ) = 
% 0.46/1.17    a_select3( X, skol19( X, Y ), skol5( X, Y ) ) }.
% 0.46/1.17  { ! alpha23( Y, Z, T ), a_select3( X, Z, T ) = a_select3( X, T, Z ), alpha4
% 0.46/1.17    ( X, Y ) }.
% 0.46/1.17  { ! alpha23( X, Y, Z ), alpha14( X, Y ) }.
% 0.46/1.17  { ! alpha23( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha23( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha14( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha23( X, Y, Z ) }.
% 0.46/1.17  { ! alpha14( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha14( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha14( X, Y ) }.
% 0.46/1.17  { alpha5( X, Z ), alpha24( Z, skol6( Y, Z ), skol20( Y, Z ) ), ! leq( n0, T
% 0.46/1.17     ), ! leq( T, Z ), ! leq( n0, U ), ! leq( U, Z ), a_select3( tptp_msub( X
% 0.46/1.17    , Y ), T, U ) = a_select3( tptp_msub( X, Y ), U, T ) }.
% 0.46/1.17  { alpha5( X, Z ), ! a_select3( Y, skol6( Y, Z ), skol20( Y, Z ) ) = 
% 0.46/1.17    a_select3( Y, skol20( Y, Z ), skol6( Y, Z ) ), ! leq( n0, T ), ! leq( T, 
% 0.46/1.17    Z ), ! leq( n0, U ), ! leq( U, Z ), a_select3( tptp_msub( X, Y ), T, U ) 
% 0.46/1.17    = a_select3( tptp_msub( X, Y ), U, T ) }.
% 0.46/1.17  { ! alpha24( X, Y, Z ), alpha15( X, Y ) }.
% 0.46/1.17  { ! alpha24( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha24( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha15( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha24( X, Y, Z ) }.
% 0.46/1.17  { ! alpha15( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha15( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha15( X, Y ) }.
% 0.46/1.17  { ! alpha5( X, Y ), alpha25( Y, skol7( X, Y ), skol21( X, Y ) ) }.
% 0.46/1.17  { ! alpha5( X, Y ), ! a_select3( X, skol7( X, Y ), skol21( X, Y ) ) = 
% 0.46/1.17    a_select3( X, skol21( X, Y ), skol7( X, Y ) ) }.
% 0.46/1.17  { ! alpha25( Y, Z, T ), a_select3( X, Z, T ) = a_select3( X, T, Z ), alpha5
% 0.46/1.17    ( X, Y ) }.
% 0.46/1.17  { ! alpha25( X, Y, Z ), alpha16( X, Y ) }.
% 0.46/1.17  { ! alpha25( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha25( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha16( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha25( X, Y, Z ) }.
% 0.46/1.17  { ! alpha16( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha16( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha16( X, Y ) }.
% 0.46/1.17  { alpha17( Y, skol8( X, Y ), skol22( X, Y ) ), ! leq( n0, Z ), ! leq( Z, Y
% 0.46/1.17     ), ! leq( n0, T ), ! leq( T, Y ), a_select3( tptp_mmul( U, tptp_mmul( X
% 0.46/1.17    , trans( U ) ) ), Z, T ) = a_select3( tptp_mmul( U, tptp_mmul( X, trans( 
% 0.46/1.17    U ) ) ), T, Z ) }.
% 0.46/1.17  { ! a_select3( X, skol8( X, Y ), skol22( X, Y ) ) = a_select3( X, skol22( X
% 0.46/1.17    , Y ), skol8( X, Y ) ), ! leq( n0, Z ), ! leq( Z, Y ), ! leq( n0, T ), ! 
% 0.46/1.17    leq( T, Y ), a_select3( tptp_mmul( U, tptp_mmul( X, trans( U ) ) ), Z, T
% 0.46/1.17     ) = a_select3( tptp_mmul( U, tptp_mmul( X, trans( U ) ) ), T, Z ) }.
% 0.46/1.17  { ! alpha17( X, Y, Z ), alpha6( X, Y ) }.
% 0.46/1.17  { ! alpha17( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha17( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha6( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha17( X, Y, Z ) }.
% 0.46/1.17  { ! alpha6( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha6( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha6( X, Y ) }.
% 0.46/1.17  { alpha18( Y, skol9( X, Y ), skol23( X, Y ) ), ! leq( n0, Z ), ! leq( Z, U
% 0.46/1.17     ), ! leq( n0, T ), ! leq( T, U ), a_select3( tptp_mmul( W, tptp_mmul( X
% 0.46/1.17    , trans( W ) ) ), Z, T ) = a_select3( tptp_mmul( W, tptp_mmul( X, trans( 
% 0.46/1.17    W ) ) ), T, Z ) }.
% 0.46/1.17  { ! a_select3( X, skol9( X, Y ), skol23( X, Y ) ) = a_select3( X, skol23( X
% 0.46/1.17    , Y ), skol9( X, Y ) ), ! leq( n0, Z ), ! leq( Z, U ), ! leq( n0, T ), ! 
% 0.46/1.17    leq( T, U ), a_select3( tptp_mmul( W, tptp_mmul( X, trans( W ) ) ), Z, T
% 0.46/1.17     ) = a_select3( tptp_mmul( W, tptp_mmul( X, trans( W ) ) ), T, Z ) }.
% 0.46/1.17  { ! alpha18( X, Y, Z ), alpha7( X, Y ) }.
% 0.46/1.17  { ! alpha18( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha18( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha7( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha18( X, Y, Z ) }.
% 0.46/1.17  { ! alpha7( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha7( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha7( X, Y ) }.
% 0.46/1.17  { alpha8( Y ), alpha19( X, T ), alpha29( T, skol10( Z, T ), skol24( Z, T )
% 0.46/1.17     ), ! leq( n0, U ), ! leq( U, T ), ! leq( n0, W ), ! leq( W, T ), 
% 0.46/1.17    a_select3( tptp_madd( X, tptp_mmul( V0, tptp_mmul( tptp_madd( tptp_mmul( 
% 0.46/1.17    V1, tptp_mmul( Y, trans( V1 ) ) ), tptp_mmul( V2, tptp_mmul( Z, trans( V2
% 0.46/1.17     ) ) ) ), trans( V0 ) ) ) ), U, W ) = a_select3( tptp_madd( X, tptp_mmul
% 0.46/1.17    ( V0, tptp_mmul( tptp_madd( tptp_mmul( V1, tptp_mmul( Y, trans( V1 ) ) )
% 0.46/1.17    , tptp_mmul( V2, tptp_mmul( Z, trans( V2 ) ) ) ), trans( V0 ) ) ) ), W, U
% 0.46/1.17     ) }.
% 0.46/1.17  { alpha8( Y ), alpha19( X, T ), ! a_select3( Z, skol10( Z, T ), skol24( Z, 
% 0.46/1.17    T ) ) = a_select3( Z, skol24( Z, T ), skol10( Z, T ) ), ! leq( n0, U ), !
% 0.46/1.17     leq( U, T ), ! leq( n0, W ), ! leq( W, T ), a_select3( tptp_madd( X, 
% 0.46/1.17    tptp_mmul( V0, tptp_mmul( tptp_madd( tptp_mmul( V1, tptp_mmul( Y, trans( 
% 0.46/1.17    V1 ) ) ), tptp_mmul( V2, tptp_mmul( Z, trans( V2 ) ) ) ), trans( V0 ) ) )
% 0.46/1.17     ), U, W ) = a_select3( tptp_madd( X, tptp_mmul( V0, tptp_mmul( tptp_madd
% 0.46/1.17    ( tptp_mmul( V1, tptp_mmul( Y, trans( V1 ) ) ), tptp_mmul( V2, tptp_mmul
% 0.46/1.17    ( Z, trans( V2 ) ) ) ), trans( V0 ) ) ) ), W, U ) }.
% 0.46/1.17  { ! alpha29( X, Y, Z ), alpha26( X, Y ) }.
% 0.46/1.17  { ! alpha29( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha29( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha26( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha29( X, Y, Z ) }.
% 0.46/1.17  { ! alpha26( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha26( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha26( X, Y ) }.
% 0.46/1.17  { ! alpha19( X, Y ), alpha30( Y, skol11( X, Y ), skol25( X, Y ) ) }.
% 0.46/1.17  { ! alpha19( X, Y ), ! a_select3( X, skol11( X, Y ), skol25( X, Y ) ) = 
% 0.46/1.17    a_select3( X, skol25( X, Y ), skol11( X, Y ) ) }.
% 0.46/1.17  { ! alpha30( Y, Z, T ), a_select3( X, Z, T ) = a_select3( X, T, Z ), 
% 0.46/1.17    alpha19( X, Y ) }.
% 0.46/1.17  { ! alpha30( X, Y, Z ), alpha27( X, Y ) }.
% 0.46/1.17  { ! alpha30( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha30( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha27( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha30( X, Y, Z ) }.
% 0.46/1.17  { ! alpha27( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha27( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha27( X, Y ) }.
% 0.46/1.17  { ! alpha8( X ), alpha28( Y, skol12( X, Y ), skol26( X, Y ) ) }.
% 0.46/1.17  { ! alpha8( X ), ! a_select3( X, skol12( X, Y ), skol26( X, Y ) ) = 
% 0.46/1.17    a_select3( X, skol26( X, Y ), skol12( X, Y ) ) }.
% 0.46/1.17  { ! alpha28( skol28( X ), Y, Z ), a_select3( X, Y, Z ) = a_select3( X, Z, Y
% 0.46/1.17     ), alpha8( X ) }.
% 0.46/1.17  { ! alpha28( X, Y, Z ), alpha20( X, Y ) }.
% 0.46/1.17  { ! alpha28( X, Y, Z ), leq( n0, Z ) }.
% 0.46/1.17  { ! alpha28( X, Y, Z ), leq( Z, X ) }.
% 0.46/1.17  { ! alpha20( X, Y ), ! leq( n0, Z ), ! leq( Z, X ), alpha28( X, Y, Z ) }.
% 0.46/1.17  { ! alpha20( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! alpha20( X, Y ), leq( Y, X ) }.
% 0.46/1.17  { ! leq( n0, Y ), ! leq( Y, X ), alpha20( X, Y ) }.
% 0.46/1.17  { sum( n0, tptp_minus_1, X ) = n0 }.
% 0.46/1.17  { tptp_float_0_0 = sum( n0, tptp_minus_1, X ) }.
% 0.46/1.17  { succ( tptp_minus_1 ) = n0 }.
% 0.46/1.17  { plus( X, n1 ) = succ( X ) }.
% 0.46/1.17  { plus( n1, X ) = succ( X ) }.
% 0.46/1.17  { plus( X, n2 ) = succ( succ( X ) ) }.
% 0.46/1.17  { plus( n2, X ) = succ( succ( X ) ) }.
% 0.46/1.17  { plus( X, n3 ) = succ( succ( succ( X ) ) ) }.
% 0.46/1.17  { plus( n3, X ) = succ( succ( succ( X ) ) ) }.
% 0.46/1.17  { plus( X, n4 ) = succ( succ( succ( succ( X ) ) ) ) }.
% 0.46/1.17  { plus( n4, X ) = succ( succ( succ( succ( X ) ) ) ) }.
% 0.46/1.17  { plus( X, n5 ) = succ( succ( succ( succ( succ( X ) ) ) ) ) }.
% 0.46/1.17  { plus( n5, X ) = succ( succ( succ( succ( succ( X ) ) ) ) ) }.
% 0.46/1.17  { minus( X, n1 ) = pred( X ) }.
% 0.46/1.17  { pred( succ( X ) ) = X }.
% 0.46/1.17  { succ( pred( X ) ) = X }.
% 0.46/1.17  { ! leq( succ( X ), succ( Y ) ), leq( X, Y ) }.
% 0.46/1.17  { ! leq( X, Y ), leq( succ( X ), succ( Y ) ) }.
% 0.46/1.17  { ! leq( succ( X ), Y ), gt( Y, X ) }.
% 0.46/1.17  { ! leq( minus( Y, X ), Y ), leq( n0, X ) }.
% 0.46/1.17  { a_select3( tptp_update3( X, Y, Z, T ), Y, Z ) = T }.
% 0.46/1.17  { X = Z, ! Y = T, ! a_select3( U, Z, T ) = W, a_select3( tptp_update3( U, X
% 0.46/1.17    , Y, V0 ), Z, T ) = W }.
% 0.46/1.17  { leq( skol27( V0, T, V1, V2 ), T ), ! leq( n0, X ), ! leq( X, Z ), ! leq( 
% 0.46/1.17    n0, Y ), ! leq( Y, T ), a_select3( tptp_update3( U, Z, T, W ), X, Y ) = W
% 0.46/1.17     }.
% 0.46/1.17  { alpha21( Z, skol13( Z, T, U, W ), skol27( Z, T, U, W ) ), ! leq( n0, X )
% 0.46/1.17    , ! leq( X, Z ), ! leq( n0, Y ), ! leq( Y, T ), a_select3( tptp_update3( 
% 0.46/1.17    U, Z, T, W ), X, Y ) = W }.
% 0.46/1.17  { ! a_select3( U, skol13( Z, T, U, W ), skol27( Z, T, U, W ) ) = W, ! leq( 
% 0.46/1.17    n0, X ), ! leq( X, Z ), ! leq( n0, Y ), ! leq( Y, T ), a_select3( 
% 0.46/1.17    tptp_update3( U, Z, T, W ), X, Y ) = W }.
% 0.46/1.17  { ! alpha21( X, Y, Z ), alpha9( Y, Z ) }.
% 0.46/1.17  { ! alpha21( X, Y, Z ), leq( Y, X ) }.
% 0.46/1.17  { ! alpha9( Y, Z ), ! leq( Y, X ), alpha21( X, Y, Z ) }.
% 0.46/1.17  { ! alpha9( X, Y ), leq( n0, X ) }.
% 0.46/1.17  { ! alpha9( X, Y ), leq( n0, Y ) }.
% 0.46/1.17  { ! leq( n0, X ), ! leq( n0, Y ), alpha9( X, Y ) }.
% 0.46/1.17  { a_select2( tptp_update2( X, Y, Z ), Y ) = Z }.
% 0.46/1.17  { X = Y, ! a_select2( Z, Y ) = T, a_select2( tptp_update2( Z, X, U ), Y ) =
% 0.46/1.17     T }.
% 0.46/1.17  { leq( n0, skol14( U, W, V0 ) ), ! leq( n0, X ), ! leq( X, Y ), a_select2( 
% 0.46/1.17    tptp_update2( Z, Y, T ), X ) = T }.
% 0.46/1.17  { leq( skol14( Y, U, W ), Y ), ! leq( n0, X ), ! leq( X, Y ), a_select2( 
% 0.46/1.17    tptp_update2( Z, Y, T ), X ) = T }.
% 0.46/1.17  { ! a_select2( Z, skol14( Y, Z, T ) ) = T, ! leq( n0, X ), ! leq( X, Y ), 
% 0.46/1.17    a_select2( tptp_update2( Z, Y, T ), X ) = T }.
% 0.46/1.17  { true }.
% 0.46/1.17  { ! def = use }.
% 0.46/1.17  { leq( n0, pv10 ) }.
% 0.46/1.17  { leq( n0, pv53 ) }.
% 0.46/1.17  { leq( n0, pv54 ) }.
% 0.46/1.17  { leq( pv10, minus( n135300, n1 ) ) }.
% 0.46/1.17  { leq( pv53, minus( n5, n1 ) ) }.
% 0.46/1.17  { leq( pv54, minus( n5, n1 ) ) }.
% 0.46/1.17  { ! leq( n0, n0 ), ! leq( n0, pv10 ), ! leq( n0, pv53 ), ! leq( n0, pv54 )
% 0.46/1.17    , ! leq( pv10, minus( n135300, n1 ) ), ! leq( pv53, minus( n5, n1 ) ), ! 
% 0.46/1.17    leq( pv54, minus( n5, n1 ) ) }.
% 0.46/1.17  { gt( n5, n4 ) }.
% 0.46/1.17  { gt( n135300, n4 ) }.
% 0.46/1.17  { gt( n135300, n5 ) }.
% 0.46/1.17  { gt( n4, tptp_minus_1 ) }.
% 0.46/1.17  { gt( n5, tptp_minus_1 ) }.
% 0.46/1.17  { gt( n135300, tptp_minus_1 ) }.
% 0.46/1.17  { gt( n0, tptp_minus_1 ) }.
% 0.46/1.17  { gt( n1, tptp_minus_1 ) }.
% 0.46/1.17  { gt( n2, tptp_minus_1 ) }.
% 0.46/1.17  { gt( n3, tptp_minus_1 ) }.
% 0.46/1.17  { gt( n4, n0 ) }.
% 0.46/1.17  { gt( n5, n0 ) }.
% 0.46/1.17  { gt( n135300, n0 ) }.
% 0.46/1.17  { gt( n1, n0 ) }.
% 0.46/1.17  { gt( n2, n0 ) }.
% 0.46/1.17  { gt( n3, n0 ) }.
% 0.46/1.17  { gt( n4, n1 ) }.
% 0.46/1.17  { gt( n5, n1 ) }.
% 0.46/1.17  { gt( n135300, n1 ) }.
% 0.46/1.17  { gt( n2, n1 ) }.
% 0.46/1.17  { gt( n3, n1 ) }.
% 0.46/1.17  { gt( n4, n2 ) }.
% 0.46/1.17  { gt( n5, n2 ) }.
% 0.46/1.17  { gt( n135300, n2 ) }.
% 0.46/1.17  { gt( n3, n2 ) }.
% 0.46/1.17  { gt( n4, n3 ) }.
% 0.46/1.17  { gt( n5, n3 ) }.
% 0.46/1.17  { gt( n135300, n3 ) }.
% 0.46/1.17  { ! leq( n0, X ), ! leq( X, n4 ), X = n0, X = n1, X = n2, X = n3, X = n4 }
% 0.46/1.17    .
% 0.46/1.17  { ! leq( n0, X ), ! leq( X, n5 ), X = n0, X = n1, X = n2, X = n3, X = n4, X
% 0.46/1.17     = n5 }.
% 0.46/1.17  { ! leq( n0, X ), ! leq( X, n0 ), X = n0 }.
% 0.46/1.17  { ! leq( n0, X ), ! leq( X, n1 ), X = n0, X = n1 }.
% 0.46/1.17  { ! leq( n0, X ), ! leq( X, n2 ), X = n0, X = n1, X = n2 }.
% 0.46/1.17  { ! leq( n0, X ), ! leq( X, n3 ), X = n0, X = n1, X = n2, X = n3 }.
% 0.46/1.17  { succ( succ( succ( succ( n0 ) ) ) ) = n4 }.
% 0.46/1.17  { succ( succ( succ( succ( succ( n0 ) ) ) ) ) = n5 }.
% 0.46/1.17  { succ( n0 ) = n1 }.
% 0.46/1.17  { succ( succ( n0 ) ) = n2 }.
% 0.46/1.17  { succ( succ( succ( n0 ) ) ) = n3 }.
% 0.46/1.17  
% 0.46/1.17  percentage equality = 0.176147, percentage horn = 0.870968
% 0.46/1.17  This is a problem with some equality
% 0.46/1.17  
% 0.46/1.17  
% 0.46/1.17  
% 0.46/1.17  Options Used:
% 0.46/1.17  
% 0.46/1.17  useres =            1
% 0.46/1.17  useparamod =        1
% 0.46/1.17  useeqrefl =         1
% 0.46/1.17  useeqfact =         1
% 0.46/1.17  usefactor =         1
% 0.46/1.17  usesimpsplitting =  0
% 0.46/1.17  usesimpdemod =      5
% 0.46/1.17  usesimpres =        3
% 0.46/1.17  
% 0.46/1.17  resimpinuse      =  1000
% 0.46/1.17  resimpclauses =     20000
% 0.46/1.17  substype =          eqrewr
% 0.46/1.17  backwardsubs =      1
% 0.46/1.17  selectoldest =      5
% 0.46/1.17  
% 0.46/1.17  litorderings [0] =  split
% 0.46/1.17  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.46/1.17  
% 0.46/1.17  termordering =      kbo
% 0.46/1.17  
% 0.46/1.17  litapriori =        0
% 0.46/1.17  termapriori =       1
% 0.46/1.17  litaposteriori =    0
% 0.46/1.17  termaposteriori =   0
% 0.46/1.17  demodaposteriori =  0
% 0.46/1.17  ordereqreflfact =   0
% 0.46/1.17  
% 0.46/1.17  litselect =         negord
% 0.46/1.17  
% 0.46/1.17  maxweight =         15
% 0.46/1.17  maxdepth =          30000
% 0.46/1.17  maxlength =         115
% 0.46/1.17  maxnrvars =         195
% 0.46/1.17  excuselevel =       1
% 0.46/1.17  increasemaxweight = 1
% 0.46/1.17  
% 0.46/1.17  maxselected =       10000000
% 0.46/1.17  maxnrclauses =      10000000
% 0.46/1.17  
% 0.46/1.17  showgenerated =    0
% 0.46/1.17  showkept =         0
% 0.46/1.17  showselected =     0
% 0.46/1.17  showdeleted =      0
% 0.46/1.17  showresimp =       1
% 0.46/1.17  showstatus =       2000
% 0.46/1.17  
% 0.46/1.17  prologoutput =     0
% 0.46/1.17  nrgoals =          5000000
% 0.46/1.17  totalproof =       1
% 0.46/1.17  
% 0.46/1.17  Symbols occurring in the translation:
% 0.46/1.17  
% 0.46/1.17  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.46/1.17  .  [1, 2]      (w:1, o:59, a:1, s:1, b:0), 
% 0.46/1.17  !  [4, 1]      (w:0, o:48, a:1, s:1, b:0), 
% 0.46/1.17  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.46/1.17  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.46/1.17  gt  [37, 2]      (w:1, o:83, a:1, s:1, b:0), 
% 0.46/1.17  leq  [39, 2]      (w:1, o:84, a:1, s:1, b:0), 
% 0.46/1.17  lt  [40, 2]      (w:1, o:85, a:1, s:1, b:0), 
% 0.46/1.17  geq  [41, 2]      (w:1, o:86, a:1, s:1, b:0), 
% 0.46/1.17  pred  [42, 1]      (w:1, o:53, a:1, s:1, b:0), 
% 0.46/1.17  succ  [43, 1]      (w:1, o:54, a:1, s:1, b:0), 
% 0.46/1.17  n0  [45, 0]      (w:1, o:12, a:1, s:1, b:0), 
% 0.46/1.17  uniform_int_rnd  [46, 2]      (w:1, o:115, a:1, s:1, b:0), 
% 0.46/1.17  dim  [51, 2]      (w:1, o:116, a:1, s:1, b:0), 
% 0.46/1.17  tptp_const_array1  [52, 2]      (w:1, o:111, a:1, s:1, b:0), 
% 0.46/1.17  a_select2  [53, 2]      (w:1, o:117, a:1, s:1, b:0), 
% 0.46/1.17  tptp_const_array2  [59, 3]      (w:1, o:138, a:1, s:1, b:0), 
% 1.77/2.18  a_select3  [60, 3]      (w:1, o:139, a:1, s:1, b:0), 
% 1.77/2.18  trans  [63, 1]      (w:1, o:56, a:1, s:1, b:0), 
% 1.77/2.18  inv  [64, 1]      (w:1, o:57, a:1, s:1, b:0), 
% 1.77/2.18  tptp_update3  [67, 4]      (w:1, o:156, a:1, s:1, b:0), 
% 1.77/2.18  tptp_madd  [69, 2]      (w:1, o:112, a:1, s:1, b:0), 
% 1.77/2.18  tptp_msub  [70, 2]      (w:1, o:113, a:1, s:1, b:0), 
% 1.77/2.18  tptp_mmul  [71, 2]      (w:1, o:114, a:1, s:1, b:0), 
% 1.77/2.18  tptp_minus_1  [77, 0]      (w:1, o:32, a:1, s:1, b:0), 
% 1.77/2.18  sum  [78, 3]      (w:1, o:136, a:1, s:1, b:0), 
% 1.77/2.18  tptp_float_0_0  [79, 0]      (w:1, o:33, a:1, s:1, b:0), 
% 1.77/2.18  n1  [80, 0]      (w:1, o:34, a:1, s:1, b:0), 
% 1.77/2.18  plus  [81, 2]      (w:1, o:118, a:1, s:1, b:0), 
% 1.77/2.18  n2  [82, 0]      (w:1, o:36, a:1, s:1, b:0), 
% 1.77/2.18  n3  [83, 0]      (w:1, o:37, a:1, s:1, b:0), 
% 1.77/2.18  n4  [84, 0]      (w:1, o:38, a:1, s:1, b:0), 
% 1.77/2.18  n5  [85, 0]      (w:1, o:39, a:1, s:1, b:0), 
% 1.77/2.18  minus  [86, 2]      (w:1, o:119, a:1, s:1, b:0), 
% 1.77/2.18  tptp_update2  [91, 3]      (w:1, o:140, a:1, s:1, b:0), 
% 1.77/2.18  true  [92, 0]      (w:1, o:42, a:1, s:1, b:0), 
% 1.77/2.18  def  [93, 0]      (w:1, o:43, a:1, s:1, b:0), 
% 1.77/2.18  use  [94, 0]      (w:1, o:44, a:1, s:1, b:0), 
% 1.77/2.18  pv10  [95, 0]      (w:1, o:45, a:1, s:1, b:0), 
% 1.77/2.18  pv53  [96, 0]      (w:1, o:46, a:1, s:1, b:0), 
% 1.77/2.18  pv54  [97, 0]      (w:1, o:47, a:1, s:1, b:0), 
% 1.77/2.18  n135300  [98, 0]      (w:1, o:35, a:1, s:1, b:0), 
% 1.77/2.18  alpha1  [99, 2]      (w:1, o:120, a:1, s:1, b:1), 
% 1.77/2.18  alpha2  [100, 2]      (w:1, o:126, a:1, s:1, b:1), 
% 1.77/2.18  alpha3  [101, 2]      (w:1, o:130, a:1, s:1, b:1), 
% 1.77/2.18  alpha4  [102, 2]      (w:1, o:131, a:1, s:1, b:1), 
% 1.77/2.18  alpha5  [103, 2]      (w:1, o:132, a:1, s:1, b:1), 
% 1.77/2.18  alpha6  [104, 2]      (w:1, o:133, a:1, s:1, b:1), 
% 1.77/2.18  alpha7  [105, 2]      (w:1, o:134, a:1, s:1, b:1), 
% 1.77/2.18  alpha8  [106, 1]      (w:1, o:58, a:1, s:1, b:1), 
% 1.77/2.18  alpha9  [107, 2]      (w:1, o:135, a:1, s:1, b:1), 
% 1.77/2.18  alpha10  [108, 3]      (w:1, o:141, a:1, s:1, b:1), 
% 1.77/2.18  alpha11  [109, 3]      (w:1, o:142, a:1, s:1, b:1), 
% 1.77/2.18  alpha12  [110, 3]      (w:1, o:143, a:1, s:1, b:1), 
% 1.77/2.18  alpha13  [111, 2]      (w:1, o:121, a:1, s:1, b:1), 
% 1.77/2.18  alpha14  [112, 2]      (w:1, o:122, a:1, s:1, b:1), 
% 1.77/2.18  alpha15  [113, 2]      (w:1, o:123, a:1, s:1, b:1), 
% 1.77/2.18  alpha16  [114, 2]      (w:1, o:124, a:1, s:1, b:1), 
% 1.77/2.18  alpha17  [115, 3]      (w:1, o:144, a:1, s:1, b:1), 
% 1.77/2.18  alpha18  [116, 3]      (w:1, o:145, a:1, s:1, b:1), 
% 1.77/2.18  alpha19  [117, 2]      (w:1, o:125, a:1, s:1, b:1), 
% 1.77/2.18  alpha20  [118, 2]      (w:1, o:127, a:1, s:1, b:1), 
% 1.77/2.18  alpha21  [119, 3]      (w:1, o:146, a:1, s:1, b:1), 
% 1.77/2.18  alpha22  [120, 3]      (w:1, o:147, a:1, s:1, b:1), 
% 1.77/2.18  alpha23  [121, 3]      (w:1, o:148, a:1, s:1, b:1), 
% 1.77/2.18  alpha24  [122, 3]      (w:1, o:149, a:1, s:1, b:1), 
% 1.77/2.18  alpha25  [123, 3]      (w:1, o:150, a:1, s:1, b:1), 
% 1.77/2.18  alpha26  [124, 2]      (w:1, o:128, a:1, s:1, b:1), 
% 1.77/2.18  alpha27  [125, 2]      (w:1, o:129, a:1, s:1, b:1), 
% 1.77/2.18  alpha28  [126, 3]      (w:1, o:151, a:1, s:1, b:1), 
% 1.77/2.18  alpha29  [127, 3]      (w:1, o:152, a:1, s:1, b:1), 
% 1.77/2.18  alpha30  [128, 3]      (w:1, o:153, a:1, s:1, b:1), 
% 1.77/2.18  skol1  [129, 2]      (w:1, o:87, a:1, s:1, b:1), 
% 1.77/2.18  skol2  [130, 2]      (w:1, o:96, a:1, s:1, b:1), 
% 1.77/2.18  skol3  [131, 2]      (w:1, o:104, a:1, s:1, b:1), 
% 1.77/2.18  skol4  [132, 2]      (w:1, o:105, a:1, s:1, b:1), 
% 1.77/2.18  skol5  [133, 2]      (w:1, o:106, a:1, s:1, b:1), 
% 1.77/2.18  skol6  [134, 2]      (w:1, o:107, a:1, s:1, b:1), 
% 1.77/2.18  skol7  [135, 2]      (w:1, o:108, a:1, s:1, b:1), 
% 1.77/2.18  skol8  [136, 2]      (w:1, o:109, a:1, s:1, b:1), 
% 1.77/2.18  skol9  [137, 2]      (w:1, o:110, a:1, s:1, b:1), 
% 1.77/2.18  skol10  [138, 2]      (w:1, o:88, a:1, s:1, b:1), 
% 1.77/2.18  skol11  [139, 2]      (w:1, o:89, a:1, s:1, b:1), 
% 1.77/2.18  skol12  [140, 2]      (w:1, o:90, a:1, s:1, b:1), 
% 1.77/2.18  skol13  [141, 4]      (w:1, o:154, a:1, s:1, b:1), 
% 1.77/2.18  skol14  [142, 3]      (w:1, o:137, a:1, s:1, b:1), 
% 1.77/2.18  skol15  [143, 2]      (w:1, o:91, a:1, s:1, b:1), 
% 1.77/2.18  skol16  [144, 2]      (w:1, o:92, a:1, s:1, b:1), 
% 1.77/2.18  skol17  [145, 2]      (w:1, o:93, a:1, s:1, b:1), 
% 1.77/2.18  skol18  [146, 2]      (w:1, o:94, a:1, s:1, b:1), 
% 1.77/2.18  skol19  [147, 2]      (w:1, o:95, a:1, s:1, b:1), 
% 1.77/2.18  skol20  [148, 2]      (w:1, o:97, a:1, s:1, b:1), 
% 1.77/2.18  skol21  [149, 2]      (w:1, o:98, a:1, s:1, b:1), 
% 1.77/2.18  skol22  [150, 2]      (w:1, o:99, a:1, s:1, b:1), 
% 1.77/2.18  skol23  [151, 2]      (w:1, o:100, a:1, s:1, b:1), 
% 1.77/2.18  skol24  [152, 2]      (w:1, o:101, a:1, s:1, b:1), 
% 1.77/2.18  skol25  [153, 2]      (w:1, o:102, a:1, s:1, b:1), 
% 1.77/2.18  skol26  [154, 2]      (w:1, o:103, a:1, s:1, b:1), 
% 1.77/2.18  skol27  [155, 4]      (w:1, o:155, a:1, s:1, b:1), 
% 1.77/2.18  skol28  [156, 1]      (w:1, o:55, a:1, s:1, b:1).
% 1.77/2.18  
% 1.77/2.18  
% 1.77/2.18  Starting Search:
% 1.77/2.18  
% 1.77/2.18  *** allocated 15000 integers for clauses
% 1.77/2.18  *** allocated 22500 integers for clauses
% 1.77/2.18  *** allocated 15000 integers for termspace/termends
% 1.77/2.18  *** allocated 33750 integers for clauses
% 1.77/2.18  *** allocated 50625 integers for clauses
% 1.77/2.18  *** allocated 22500 integers for termspace/termends
% 1.77/2.18  *** allocated 75937 integers for clauses
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  *** allocated 33750 integers for termspace/termends
% 1.77/2.18  *** allocated 113905 integers for clauses
% 1.77/2.18  *** allocated 50625 integers for termspace/termends
% 1.77/2.18  
% 1.77/2.18  Intermediate Status:
% 1.77/2.18  Generated:    7955
% 1.77/2.18  Kept:         2035
% 1.77/2.18  Inuse:        171
% 1.77/2.18  Deleted:      0
% 1.77/2.18  Deletedinuse: 0
% 1.77/2.18  
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  *** allocated 170857 integers for clauses
% 1.77/2.18  *** allocated 75937 integers for termspace/termends
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  *** allocated 113905 integers for termspace/termends
% 1.77/2.18  *** allocated 256285 integers for clauses
% 1.77/2.18  
% 1.77/2.18  Intermediate Status:
% 1.77/2.18  Generated:    16618
% 1.77/2.18  Kept:         4098
% 1.77/2.18  Inuse:        331
% 1.77/2.18  Deleted:      0
% 1.77/2.18  Deletedinuse: 0
% 1.77/2.18  
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  *** allocated 170857 integers for termspace/termends
% 1.77/2.18  *** allocated 384427 integers for clauses
% 1.77/2.18  
% 1.77/2.18  Intermediate Status:
% 1.77/2.18  Generated:    23379
% 1.77/2.18  Kept:         6098
% 1.77/2.18  Inuse:        456
% 1.77/2.18  Deleted:      0
% 1.77/2.18  Deletedinuse: 0
% 1.77/2.18  
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  *** allocated 256285 integers for termspace/termends
% 1.77/2.18  
% 1.77/2.18  Intermediate Status:
% 1.77/2.18  Generated:    31594
% 1.77/2.18  Kept:         8160
% 1.77/2.18  Inuse:        551
% 1.77/2.18  Deleted:      0
% 1.77/2.18  Deletedinuse: 0
% 1.77/2.18  
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  *** allocated 576640 integers for clauses
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  
% 1.77/2.18  Intermediate Status:
% 1.77/2.18  Generated:    36263
% 1.77/2.18  Kept:         10173
% 1.77/2.18  Inuse:        670
% 1.77/2.18  Deleted:      0
% 1.77/2.18  Deletedinuse: 0
% 1.77/2.18  
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  *** allocated 384427 integers for termspace/termends
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  
% 1.77/2.18  Intermediate Status:
% 1.77/2.18  Generated:    44551
% 1.77/2.18  Kept:         12241
% 1.77/2.18  Inuse:        795
% 1.77/2.18  Deleted:      13
% 1.77/2.18  Deletedinuse: 12
% 1.77/2.18  
% 1.77/2.18  Resimplifying inuse:
% 1.77/2.18  Done
% 1.77/2.18  
% 1.77/2.18  *** allocated 864960 integers for clauses
% 1.77/2.18  
% 1.77/2.18  Bliksems!, er is een bewijs:
% 1.77/2.18  % SZS status Theorem
% 1.77/2.18  % SZS output start Refutation
% 1.77/2.18  
% 1.77/2.18  (3) {G0,W3,D2,L1,V1,M1} I { leq( X, X ) }.
% 1.77/2.18  (146) {G0,W6,D3,L1,V1,M1} I { minus( X, n1 ) ==> pred( X ) }.
% 1.77/2.18  (171) {G0,W3,D2,L1,V0,M1} I { leq( n0, pv10 ) }.
% 1.77/2.18  (172) {G0,W3,D2,L1,V0,M1} I { leq( n0, pv53 ) }.
% 1.77/2.18  (173) {G0,W3,D2,L1,V0,M1} I { leq( n0, pv54 ) }.
% 1.77/2.18  (174) {G1,W4,D3,L1,V0,M1} I;d(146) { leq( pv10, pred( n135300 ) ) }.
% 1.77/2.18  (175) {G1,W4,D3,L1,V0,M1} I;d(146) { leq( pv53, pred( n5 ) ) }.
% 1.77/2.18  (176) {G1,W4,D3,L1,V0,M1} I;d(146) { leq( pv54, pred( n5 ) ) }.
% 1.77/2.18  (177) {G1,W21,D3,L6,V0,M6} I;d(146);d(146);d(146);r(3) { ! leq( n0, pv10 )
% 1.77/2.18    , ! leq( n0, pv53 ), ! leq( n0, pv54 ), ! leq( pv10, pred( n135300 ) ), !
% 1.77/2.18     leq( pv53, pred( n5 ) ), ! leq( pv54, pred( n5 ) ) }.
% 1.77/2.18  (13535) {G2,W0,D0,L0,V0,M0} S(177);r(171);r(172);r(173);r(174);r(175);r(176
% 1.77/2.18    ) {  }.
% 1.77/2.18  
% 1.77/2.18  
% 1.77/2.18  % SZS output end Refutation
% 1.77/2.18  found a proof!
% 1.77/2.18  
% 1.77/2.18  
% 1.77/2.18  Unprocessed initial clauses:
% 1.77/2.18  
% 1.77/2.18  (13537) {G0,W9,D2,L3,V2,M3}  { gt( X, Y ), gt( Y, X ), X = Y }.
% 1.77/2.18  (13538) {G0,W9,D2,L3,V3,M3}  { ! gt( X, Z ), ! gt( Z, Y ), gt( X, Y ) }.
% 1.77/2.18  (13539) {G0,W3,D2,L1,V1,M1}  { ! gt( X, X ) }.
% 1.77/2.18  (13540) {G0,W3,D2,L1,V1,M1}  { leq( X, X ) }.
% 1.77/2.18  (13541) {G0,W9,D2,L3,V3,M3}  { ! leq( X, Z ), ! leq( Z, Y ), leq( X, Y )
% 1.77/2.18     }.
% 1.77/2.18  (13542) {G0,W6,D2,L2,V2,M2}  { ! lt( X, Y ), gt( Y, X ) }.
% 1.77/2.18  (13543) {G0,W6,D2,L2,V2,M2}  { ! gt( Y, X ), lt( X, Y ) }.
% 1.77/2.18  (13544) {G0,W6,D2,L2,V2,M2}  { ! geq( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13545) {G0,W6,D2,L2,V2,M2}  { ! leq( Y, X ), geq( X, Y ) }.
% 1.77/2.18  (13546) {G0,W6,D2,L2,V2,M2}  { ! gt( Y, X ), leq( X, Y ) }.
% 1.77/2.18  (13547) {G0,W9,D2,L3,V2,M3}  { ! leq( X, Y ), X = Y, gt( Y, X ) }.
% 1.77/2.18  (13548) {G0,W7,D3,L2,V2,M2}  { ! leq( X, pred( Y ) ), gt( Y, X ) }.
% 1.77/2.18  (13549) {G0,W7,D3,L2,V2,M2}  { ! gt( Y, X ), leq( X, pred( Y ) ) }.
% 1.77/2.18  (13550) {G0,W4,D3,L1,V1,M1}  { gt( succ( X ), X ) }.
% 1.77/2.18  (13551) {G0,W7,D3,L2,V2,M2}  { ! leq( X, Y ), leq( X, succ( Y ) ) }.
% 1.77/2.18  (13552) {G0,W7,D3,L2,V2,M2}  { ! leq( X, Y ), gt( succ( Y ), X ) }.
% 1.77/2.18  (13553) {G0,W7,D3,L2,V2,M2}  { ! gt( succ( Y ), X ), leq( X, Y ) }.
% 1.77/2.18  (13554) {G0,W8,D3,L2,V2,M2}  { ! leq( n0, X ), leq( uniform_int_rnd( Y, X )
% 1.77/2.18    , X ) }.
% 1.77/2.18  (13555) {G0,W8,D3,L2,V2,M2}  { ! leq( n0, X ), leq( n0, uniform_int_rnd( Y
% 1.77/2.18    , X ) ) }.
% 1.77/2.18  (13556) {G0,W15,D5,L3,V4,M3}  { ! leq( Y, X ), ! leq( X, Z ), a_select2( 
% 1.77/2.18    tptp_const_array1( dim( Y, Z ), T ), X ) = T }.
% 1.77/2.18  (13557) {G0,W25,D5,L5,V7,M5}  { ! leq( Y, X ), ! leq( X, Z ), ! leq( U, T )
% 1.77/2.18    , ! leq( T, W ), a_select3( tptp_const_array2( dim( Y, Z ), dim( U, W ), 
% 1.77/2.18    V0 ), X, T ) = V0 }.
% 1.77/2.18  (13558) {G0,W31,D4,L6,V4,M6}  { alpha10( Y, skol1( X, Y ), skol15( X, Y ) )
% 1.77/2.18    , ! leq( n0, Z ), ! leq( Z, Y ), ! leq( n0, T ), ! leq( T, Y ), a_select3
% 1.77/2.18    ( trans( X ), Z, T ) = a_select3( trans( X ), T, Z ) }.
% 1.77/2.18  (13559) {G0,W40,D4,L6,V4,M6}  { ! a_select3( X, skol1( X, Y ), skol15( X, Y
% 1.77/2.18     ) ) = a_select3( X, skol15( X, Y ), skol1( X, Y ) ), ! leq( n0, Z ), ! 
% 1.77/2.18    leq( Z, Y ), ! leq( n0, T ), ! leq( T, Y ), a_select3( trans( X ), Z, T )
% 1.77/2.18     = a_select3( trans( X ), T, Z ) }.
% 1.77/2.18  (13560) {G0,W7,D2,L2,V3,M2}  { ! alpha10( X, Y, Z ), alpha1( X, Y ) }.
% 1.77/2.18  (13561) {G0,W7,D2,L2,V3,M2}  { ! alpha10( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13562) {G0,W7,D2,L2,V3,M2}  { ! alpha10( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13563) {G0,W13,D2,L4,V3,M4}  { ! alpha1( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha10( X, Y, Z ) }.
% 1.77/2.18  (13564) {G0,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13565) {G0,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13566) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha1( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13567) {G0,W31,D4,L6,V4,M6}  { alpha11( Y, skol2( X, Y ), skol16( X, Y ) )
% 1.77/2.18    , ! leq( n0, Z ), ! leq( Z, Y ), ! leq( n0, T ), ! leq( T, Y ), a_select3
% 1.77/2.18    ( inv( X ), Z, T ) = a_select3( inv( X ), T, Z ) }.
% 1.77/2.18  (13568) {G0,W40,D4,L6,V4,M6}  { ! a_select3( X, skol2( X, Y ), skol16( X, Y
% 1.77/2.18     ) ) = a_select3( X, skol16( X, Y ), skol2( X, Y ) ), ! leq( n0, Z ), ! 
% 1.77/2.18    leq( Z, Y ), ! leq( n0, T ), ! leq( T, Y ), a_select3( inv( X ), Z, T ) =
% 1.77/2.18     a_select3( inv( X ), T, Z ) }.
% 1.77/2.18  (13569) {G0,W7,D2,L2,V3,M2}  { ! alpha11( X, Y, Z ), alpha2( X, Y ) }.
% 1.77/2.18  (13570) {G0,W7,D2,L2,V3,M2}  { ! alpha11( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13571) {G0,W7,D2,L2,V3,M2}  { ! alpha11( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13572) {G0,W13,D2,L4,V3,M4}  { ! alpha2( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha11( X, Y, Z ) }.
% 1.77/2.18  (13573) {G0,W6,D2,L2,V2,M2}  { ! alpha2( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13574) {G0,W6,D2,L2,V2,M2}  { ! alpha2( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13575) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha2( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13576) {G0,W43,D4,L8,V6,M8}  { alpha12( Y, skol3( X, Y ), skol17( X, Y ) )
% 1.77/2.18    , ! leq( n0, Z ), ! leq( Z, Y ), ! leq( n0, T ), ! leq( T, Y ), ! leq( n0
% 1.77/2.18    , U ), ! leq( U, Y ), a_select3( tptp_update3( X, U, U, W ), Z, T ) = 
% 1.77/2.18    a_select3( tptp_update3( X, U, U, W ), T, Z ) }.
% 1.77/2.18  (13577) {G0,W52,D4,L8,V6,M8}  { ! a_select3( X, skol3( X, Y ), skol17( X, Y
% 1.77/2.18     ) ) = a_select3( X, skol17( X, Y ), skol3( X, Y ) ), ! leq( n0, Z ), ! 
% 1.77/2.18    leq( Z, Y ), ! leq( n0, T ), ! leq( T, Y ), ! leq( n0, U ), ! leq( U, Y )
% 1.77/2.18    , a_select3( tptp_update3( X, U, U, W ), Z, T ) = a_select3( tptp_update3
% 1.77/2.18    ( X, U, U, W ), T, Z ) }.
% 1.77/2.18  (13578) {G0,W7,D2,L2,V3,M2}  { ! alpha12( X, Y, Z ), alpha3( X, Y ) }.
% 1.77/2.18  (13579) {G0,W7,D2,L2,V3,M2}  { ! alpha12( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13580) {G0,W7,D2,L2,V3,M2}  { ! alpha12( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13581) {G0,W13,D2,L4,V3,M4}  { ! alpha3( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha12( X, Y, Z ) }.
% 1.77/2.18  (13582) {G0,W6,D2,L2,V2,M2}  { ! alpha3( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13583) {G0,W6,D2,L2,V2,M2}  { ! alpha3( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13584) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha3( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13585) {G0,W36,D4,L7,V5,M7}  { alpha4( X, Z ), alpha22( Z, skol4( Y, Z ), 
% 1.77/2.18    skol18( Y, Z ) ), ! leq( n0, T ), ! leq( T, Z ), ! leq( n0, U ), ! leq( U
% 1.77/2.18    , Z ), a_select3( tptp_madd( X, Y ), T, U ) = a_select3( tptp_madd( X, Y
% 1.77/2.18     ), U, T ) }.
% 1.77/2.18  (13586) {G0,W45,D4,L7,V5,M7}  { alpha4( X, Z ), ! a_select3( Y, skol4( Y, Z
% 1.77/2.18     ), skol18( Y, Z ) ) = a_select3( Y, skol18( Y, Z ), skol4( Y, Z ) ), ! 
% 1.77/2.18    leq( n0, T ), ! leq( T, Z ), ! leq( n0, U ), ! leq( U, Z ), a_select3( 
% 1.77/2.18    tptp_madd( X, Y ), T, U ) = a_select3( tptp_madd( X, Y ), U, T ) }.
% 1.77/2.18  (13587) {G0,W7,D2,L2,V3,M2}  { ! alpha22( X, Y, Z ), alpha13( X, Y ) }.
% 1.77/2.18  (13588) {G0,W7,D2,L2,V3,M2}  { ! alpha22( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13589) {G0,W7,D2,L2,V3,M2}  { ! alpha22( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13590) {G0,W13,D2,L4,V3,M4}  { ! alpha13( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha22( X, Y, Z ) }.
% 1.77/2.18  (13591) {G0,W6,D2,L2,V2,M2}  { ! alpha13( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13592) {G0,W6,D2,L2,V2,M2}  { ! alpha13( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13593) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha13( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13594) {G0,W11,D3,L2,V2,M2}  { ! alpha4( X, Y ), alpha23( Y, skol5( X, Y )
% 1.77/2.18    , skol19( X, Y ) ) }.
% 1.77/2.18  (13595) {G0,W20,D4,L2,V2,M2}  { ! alpha4( X, Y ), ! a_select3( X, skol5( X
% 1.77/2.18    , Y ), skol19( X, Y ) ) = a_select3( X, skol19( X, Y ), skol5( X, Y ) )
% 1.77/2.18     }.
% 1.77/2.18  (13596) {G0,W16,D3,L3,V4,M3}  { ! alpha23( Y, Z, T ), a_select3( X, Z, T ) 
% 1.77/2.18    = a_select3( X, T, Z ), alpha4( X, Y ) }.
% 1.77/2.18  (13597) {G0,W7,D2,L2,V3,M2}  { ! alpha23( X, Y, Z ), alpha14( X, Y ) }.
% 1.77/2.18  (13598) {G0,W7,D2,L2,V3,M2}  { ! alpha23( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13599) {G0,W7,D2,L2,V3,M2}  { ! alpha23( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13600) {G0,W13,D2,L4,V3,M4}  { ! alpha14( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha23( X, Y, Z ) }.
% 1.77/2.18  (13601) {G0,W6,D2,L2,V2,M2}  { ! alpha14( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13602) {G0,W6,D2,L2,V2,M2}  { ! alpha14( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13603) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha14( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13604) {G0,W36,D4,L7,V5,M7}  { alpha5( X, Z ), alpha24( Z, skol6( Y, Z ), 
% 1.77/2.18    skol20( Y, Z ) ), ! leq( n0, T ), ! leq( T, Z ), ! leq( n0, U ), ! leq( U
% 1.77/2.18    , Z ), a_select3( tptp_msub( X, Y ), T, U ) = a_select3( tptp_msub( X, Y
% 1.77/2.18     ), U, T ) }.
% 1.77/2.18  (13605) {G0,W45,D4,L7,V5,M7}  { alpha5( X, Z ), ! a_select3( Y, skol6( Y, Z
% 1.77/2.18     ), skol20( Y, Z ) ) = a_select3( Y, skol20( Y, Z ), skol6( Y, Z ) ), ! 
% 1.77/2.18    leq( n0, T ), ! leq( T, Z ), ! leq( n0, U ), ! leq( U, Z ), a_select3( 
% 1.77/2.18    tptp_msub( X, Y ), T, U ) = a_select3( tptp_msub( X, Y ), U, T ) }.
% 1.77/2.18  (13606) {G0,W7,D2,L2,V3,M2}  { ! alpha24( X, Y, Z ), alpha15( X, Y ) }.
% 1.77/2.18  (13607) {G0,W7,D2,L2,V3,M2}  { ! alpha24( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13608) {G0,W7,D2,L2,V3,M2}  { ! alpha24( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13609) {G0,W13,D2,L4,V3,M4}  { ! alpha15( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha24( X, Y, Z ) }.
% 1.77/2.18  (13610) {G0,W6,D2,L2,V2,M2}  { ! alpha15( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13611) {G0,W6,D2,L2,V2,M2}  { ! alpha15( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13612) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha15( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13613) {G0,W11,D3,L2,V2,M2}  { ! alpha5( X, Y ), alpha25( Y, skol7( X, Y )
% 1.77/2.18    , skol21( X, Y ) ) }.
% 1.77/2.18  (13614) {G0,W20,D4,L2,V2,M2}  { ! alpha5( X, Y ), ! a_select3( X, skol7( X
% 1.77/2.18    , Y ), skol21( X, Y ) ) = a_select3( X, skol21( X, Y ), skol7( X, Y ) )
% 1.77/2.18     }.
% 1.77/2.18  (13615) {G0,W16,D3,L3,V4,M3}  { ! alpha25( Y, Z, T ), a_select3( X, Z, T ) 
% 1.77/2.18    = a_select3( X, T, Z ), alpha5( X, Y ) }.
% 1.77/2.18  (13616) {G0,W7,D2,L2,V3,M2}  { ! alpha25( X, Y, Z ), alpha16( X, Y ) }.
% 1.77/2.18  (13617) {G0,W7,D2,L2,V3,M2}  { ! alpha25( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13618) {G0,W7,D2,L2,V3,M2}  { ! alpha25( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13619) {G0,W13,D2,L4,V3,M4}  { ! alpha16( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha25( X, Y, Z ) }.
% 1.77/2.18  (13620) {G0,W6,D2,L2,V2,M2}  { ! alpha16( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13621) {G0,W6,D2,L2,V2,M2}  { ! alpha16( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13622) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha16( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13623) {G0,W39,D6,L6,V5,M6}  { alpha17( Y, skol8( X, Y ), skol22( X, Y ) )
% 1.77/2.18    , ! leq( n0, Z ), ! leq( Z, Y ), ! leq( n0, T ), ! leq( T, Y ), a_select3
% 1.77/2.18    ( tptp_mmul( U, tptp_mmul( X, trans( U ) ) ), Z, T ) = a_select3( 
% 1.77/2.18    tptp_mmul( U, tptp_mmul( X, trans( U ) ) ), T, Z ) }.
% 1.77/2.18  (13624) {G0,W48,D6,L6,V5,M6}  { ! a_select3( X, skol8( X, Y ), skol22( X, Y
% 1.77/2.18     ) ) = a_select3( X, skol22( X, Y ), skol8( X, Y ) ), ! leq( n0, Z ), ! 
% 1.77/2.18    leq( Z, Y ), ! leq( n0, T ), ! leq( T, Y ), a_select3( tptp_mmul( U, 
% 1.77/2.18    tptp_mmul( X, trans( U ) ) ), Z, T ) = a_select3( tptp_mmul( U, tptp_mmul
% 1.77/2.18    ( X, trans( U ) ) ), T, Z ) }.
% 1.77/2.18  (13625) {G0,W7,D2,L2,V3,M2}  { ! alpha17( X, Y, Z ), alpha6( X, Y ) }.
% 1.77/2.18  (13626) {G0,W7,D2,L2,V3,M2}  { ! alpha17( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13627) {G0,W7,D2,L2,V3,M2}  { ! alpha17( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13628) {G0,W13,D2,L4,V3,M4}  { ! alpha6( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha17( X, Y, Z ) }.
% 1.77/2.18  (13629) {G0,W6,D2,L2,V2,M2}  { ! alpha6( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13630) {G0,W6,D2,L2,V2,M2}  { ! alpha6( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13631) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha6( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13632) {G0,W39,D6,L6,V6,M6}  { alpha18( Y, skol9( X, Y ), skol23( X, Y ) )
% 1.77/2.18    , ! leq( n0, Z ), ! leq( Z, U ), ! leq( n0, T ), ! leq( T, U ), a_select3
% 1.77/2.18    ( tptp_mmul( W, tptp_mmul( X, trans( W ) ) ), Z, T ) = a_select3( 
% 1.77/2.18    tptp_mmul( W, tptp_mmul( X, trans( W ) ) ), T, Z ) }.
% 1.77/2.18  (13633) {G0,W48,D6,L6,V6,M6}  { ! a_select3( X, skol9( X, Y ), skol23( X, Y
% 1.77/2.18     ) ) = a_select3( X, skol23( X, Y ), skol9( X, Y ) ), ! leq( n0, Z ), ! 
% 1.77/2.18    leq( Z, U ), ! leq( n0, T ), ! leq( T, U ), a_select3( tptp_mmul( W, 
% 1.77/2.18    tptp_mmul( X, trans( W ) ) ), Z, T ) = a_select3( tptp_mmul( W, tptp_mmul
% 1.77/2.18    ( X, trans( W ) ) ), T, Z ) }.
% 1.77/2.18  (13634) {G0,W7,D2,L2,V3,M2}  { ! alpha18( X, Y, Z ), alpha7( X, Y ) }.
% 1.77/2.18  (13635) {G0,W7,D2,L2,V3,M2}  { ! alpha18( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13636) {G0,W7,D2,L2,V3,M2}  { ! alpha18( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13637) {G0,W13,D2,L4,V3,M4}  { ! alpha7( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha18( X, Y, Z ) }.
% 1.77/2.18  (13638) {G0,W6,D2,L2,V2,M2}  { ! alpha7( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13639) {G0,W6,D2,L2,V2,M2}  { ! alpha7( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13640) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha7( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13641) {G0,W72,D10,L8,V9,M8}  { alpha8( Y ), alpha19( X, T ), alpha29( T, 
% 1.77/2.18    skol10( Z, T ), skol24( Z, T ) ), ! leq( n0, U ), ! leq( U, T ), ! leq( 
% 1.77/2.18    n0, W ), ! leq( W, T ), a_select3( tptp_madd( X, tptp_mmul( V0, tptp_mmul
% 1.77/2.18    ( tptp_madd( tptp_mmul( V1, tptp_mmul( Y, trans( V1 ) ) ), tptp_mmul( V2
% 1.77/2.18    , tptp_mmul( Z, trans( V2 ) ) ) ), trans( V0 ) ) ) ), U, W ) = a_select3
% 1.77/2.18    ( tptp_madd( X, tptp_mmul( V0, tptp_mmul( tptp_madd( tptp_mmul( V1, 
% 1.77/2.18    tptp_mmul( Y, trans( V1 ) ) ), tptp_mmul( V2, tptp_mmul( Z, trans( V2 ) )
% 1.77/2.18     ) ), trans( V0 ) ) ) ), W, U ) }.
% 1.77/2.18  (13642) {G0,W81,D10,L8,V9,M8}  { alpha8( Y ), alpha19( X, T ), ! a_select3
% 1.77/2.18    ( Z, skol10( Z, T ), skol24( Z, T ) ) = a_select3( Z, skol24( Z, T ), 
% 1.77/2.18    skol10( Z, T ) ), ! leq( n0, U ), ! leq( U, T ), ! leq( n0, W ), ! leq( W
% 1.77/2.18    , T ), a_select3( tptp_madd( X, tptp_mmul( V0, tptp_mmul( tptp_madd( 
% 1.77/2.18    tptp_mmul( V1, tptp_mmul( Y, trans( V1 ) ) ), tptp_mmul( V2, tptp_mmul( Z
% 1.77/2.18    , trans( V2 ) ) ) ), trans( V0 ) ) ) ), U, W ) = a_select3( tptp_madd( X
% 1.77/2.18    , tptp_mmul( V0, tptp_mmul( tptp_madd( tptp_mmul( V1, tptp_mmul( Y, trans
% 1.77/2.18    ( V1 ) ) ), tptp_mmul( V2, tptp_mmul( Z, trans( V2 ) ) ) ), trans( V0 ) )
% 1.77/2.18     ) ), W, U ) }.
% 1.77/2.18  (13643) {G0,W7,D2,L2,V3,M2}  { ! alpha29( X, Y, Z ), alpha26( X, Y ) }.
% 1.77/2.18  (13644) {G0,W7,D2,L2,V3,M2}  { ! alpha29( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13645) {G0,W7,D2,L2,V3,M2}  { ! alpha29( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13646) {G0,W13,D2,L4,V3,M4}  { ! alpha26( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha29( X, Y, Z ) }.
% 1.77/2.18  (13647) {G0,W6,D2,L2,V2,M2}  { ! alpha26( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13648) {G0,W6,D2,L2,V2,M2}  { ! alpha26( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13649) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha26( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13650) {G0,W11,D3,L2,V2,M2}  { ! alpha19( X, Y ), alpha30( Y, skol11( X, Y
% 1.77/2.18     ), skol25( X, Y ) ) }.
% 1.77/2.18  (13651) {G0,W20,D4,L2,V2,M2}  { ! alpha19( X, Y ), ! a_select3( X, skol11( 
% 1.77/2.18    X, Y ), skol25( X, Y ) ) = a_select3( X, skol25( X, Y ), skol11( X, Y ) )
% 1.77/2.18     }.
% 1.77/2.18  (13652) {G0,W16,D3,L3,V4,M3}  { ! alpha30( Y, Z, T ), a_select3( X, Z, T ) 
% 1.77/2.18    = a_select3( X, T, Z ), alpha19( X, Y ) }.
% 1.77/2.18  (13653) {G0,W7,D2,L2,V3,M2}  { ! alpha30( X, Y, Z ), alpha27( X, Y ) }.
% 1.77/2.18  (13654) {G0,W7,D2,L2,V3,M2}  { ! alpha30( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13655) {G0,W7,D2,L2,V3,M2}  { ! alpha30( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13656) {G0,W13,D2,L4,V3,M4}  { ! alpha27( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha30( X, Y, Z ) }.
% 1.77/2.18  (13657) {G0,W6,D2,L2,V2,M2}  { ! alpha27( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13658) {G0,W6,D2,L2,V2,M2}  { ! alpha27( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13659) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha27( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13660) {G0,W10,D3,L2,V2,M2}  { ! alpha8( X ), alpha28( Y, skol12( X, Y ), 
% 1.77/2.18    skol26( X, Y ) ) }.
% 1.77/2.18  (13661) {G0,W19,D4,L2,V2,M2}  { ! alpha8( X ), ! a_select3( X, skol12( X, Y
% 1.77/2.18     ), skol26( X, Y ) ) = a_select3( X, skol26( X, Y ), skol12( X, Y ) ) }.
% 1.77/2.18  (13662) {G0,W16,D3,L3,V3,M3}  { ! alpha28( skol28( X ), Y, Z ), a_select3( 
% 1.77/2.18    X, Y, Z ) = a_select3( X, Z, Y ), alpha8( X ) }.
% 1.77/2.18  (13663) {G0,W7,D2,L2,V3,M2}  { ! alpha28( X, Y, Z ), alpha20( X, Y ) }.
% 1.77/2.18  (13664) {G0,W7,D2,L2,V3,M2}  { ! alpha28( X, Y, Z ), leq( n0, Z ) }.
% 1.77/2.18  (13665) {G0,W7,D2,L2,V3,M2}  { ! alpha28( X, Y, Z ), leq( Z, X ) }.
% 1.77/2.18  (13666) {G0,W13,D2,L4,V3,M4}  { ! alpha20( X, Y ), ! leq( n0, Z ), ! leq( Z
% 1.77/2.18    , X ), alpha28( X, Y, Z ) }.
% 1.77/2.18  (13667) {G0,W6,D2,L2,V2,M2}  { ! alpha20( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13668) {G0,W6,D2,L2,V2,M2}  { ! alpha20( X, Y ), leq( Y, X ) }.
% 1.77/2.18  (13669) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, Y ), ! leq( Y, X ), alpha20( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13670) {G0,W6,D3,L1,V1,M1}  { sum( n0, tptp_minus_1, X ) = n0 }.
% 1.77/2.18  (13671) {G0,W6,D3,L1,V1,M1}  { tptp_float_0_0 = sum( n0, tptp_minus_1, X )
% 1.77/2.18     }.
% 1.77/2.18  (13672) {G0,W4,D3,L1,V0,M1}  { succ( tptp_minus_1 ) = n0 }.
% 1.77/2.18  (13673) {G0,W6,D3,L1,V1,M1}  { plus( X, n1 ) = succ( X ) }.
% 1.77/2.18  (13674) {G0,W6,D3,L1,V1,M1}  { plus( n1, X ) = succ( X ) }.
% 1.77/2.18  (13675) {G0,W7,D4,L1,V1,M1}  { plus( X, n2 ) = succ( succ( X ) ) }.
% 1.77/2.18  (13676) {G0,W7,D4,L1,V1,M1}  { plus( n2, X ) = succ( succ( X ) ) }.
% 1.77/2.18  (13677) {G0,W8,D5,L1,V1,M1}  { plus( X, n3 ) = succ( succ( succ( X ) ) )
% 1.77/2.18     }.
% 1.77/2.18  (13678) {G0,W8,D5,L1,V1,M1}  { plus( n3, X ) = succ( succ( succ( X ) ) )
% 1.77/2.18     }.
% 1.77/2.18  (13679) {G0,W9,D6,L1,V1,M1}  { plus( X, n4 ) = succ( succ( succ( succ( X )
% 1.77/2.18     ) ) ) }.
% 1.77/2.18  (13680) {G0,W9,D6,L1,V1,M1}  { plus( n4, X ) = succ( succ( succ( succ( X )
% 1.77/2.18     ) ) ) }.
% 1.77/2.18  (13681) {G0,W10,D7,L1,V1,M1}  { plus( X, n5 ) = succ( succ( succ( succ( 
% 1.77/2.18    succ( X ) ) ) ) ) }.
% 1.77/2.18  (13682) {G0,W10,D7,L1,V1,M1}  { plus( n5, X ) = succ( succ( succ( succ( 
% 1.77/2.18    succ( X ) ) ) ) ) }.
% 1.77/2.18  (13683) {G0,W6,D3,L1,V1,M1}  { minus( X, n1 ) = pred( X ) }.
% 1.77/2.18  (13684) {G0,W5,D4,L1,V1,M1}  { pred( succ( X ) ) = X }.
% 1.77/2.18  (13685) {G0,W5,D4,L1,V1,M1}  { succ( pred( X ) ) = X }.
% 1.77/2.18  (13686) {G0,W8,D3,L2,V2,M2}  { ! leq( succ( X ), succ( Y ) ), leq( X, Y )
% 1.77/2.18     }.
% 1.77/2.18  (13687) {G0,W8,D3,L2,V2,M2}  { ! leq( X, Y ), leq( succ( X ), succ( Y ) )
% 1.77/2.18     }.
% 1.77/2.18  (13688) {G0,W7,D3,L2,V2,M2}  { ! leq( succ( X ), Y ), gt( Y, X ) }.
% 1.77/2.18  (13689) {G0,W8,D3,L2,V2,M2}  { ! leq( minus( Y, X ), Y ), leq( n0, X ) }.
% 1.77/2.18  (13690) {G0,W10,D4,L1,V4,M1}  { a_select3( tptp_update3( X, Y, Z, T ), Y, Z
% 1.77/2.18     ) = T }.
% 1.77/2.18  (13691) {G0,W22,D4,L4,V7,M4}  { X = Z, ! Y = T, ! a_select3( U, Z, T ) = W
% 1.77/2.18    , a_select3( tptp_update3( U, X, Y, V0 ), Z, T ) = W }.
% 1.77/2.18  (13692) {G0,W29,D4,L6,V9,M6}  { leq( skol27( V0, T, V1, V2 ), T ), ! leq( 
% 1.77/2.18    n0, X ), ! leq( X, Z ), ! leq( n0, Y ), ! leq( Y, T ), a_select3( 
% 1.77/2.18    tptp_update3( U, Z, T, W ), X, Y ) = W }.
% 1.77/2.18  (13693) {G0,W34,D4,L6,V6,M6}  { alpha21( Z, skol13( Z, T, U, W ), skol27( Z
% 1.77/2.18    , T, U, W ) ), ! leq( n0, X ), ! leq( X, Z ), ! leq( n0, Y ), ! leq( Y, T
% 1.77/2.18     ), a_select3( tptp_update3( U, Z, T, W ), X, Y ) = W }.
% 1.77/2.18  (13694) {G0,W36,D4,L6,V6,M6}  { ! a_select3( U, skol13( Z, T, U, W ), 
% 1.77/2.18    skol27( Z, T, U, W ) ) = W, ! leq( n0, X ), ! leq( X, Z ), ! leq( n0, Y )
% 1.77/2.18    , ! leq( Y, T ), a_select3( tptp_update3( U, Z, T, W ), X, Y ) = W }.
% 1.77/2.18  (13695) {G0,W7,D2,L2,V3,M2}  { ! alpha21( X, Y, Z ), alpha9( Y, Z ) }.
% 1.77/2.18  (13696) {G0,W7,D2,L2,V3,M2}  { ! alpha21( X, Y, Z ), leq( Y, X ) }.
% 1.77/2.18  (13697) {G0,W10,D2,L3,V3,M3}  { ! alpha9( Y, Z ), ! leq( Y, X ), alpha21( X
% 1.77/2.18    , Y, Z ) }.
% 1.77/2.18  (13698) {G0,W6,D2,L2,V2,M2}  { ! alpha9( X, Y ), leq( n0, X ) }.
% 1.77/2.18  (13699) {G0,W6,D2,L2,V2,M2}  { ! alpha9( X, Y ), leq( n0, Y ) }.
% 1.77/2.18  (13700) {G0,W9,D2,L3,V2,M3}  { ! leq( n0, X ), ! leq( n0, Y ), alpha9( X, Y
% 1.77/2.18     ) }.
% 1.77/2.18  (13701) {G0,W8,D4,L1,V3,M1}  { a_select2( tptp_update2( X, Y, Z ), Y ) = Z
% 1.77/2.18     }.
% 1.77/2.18  (13702) {G0,W16,D4,L3,V5,M3}  { X = Y, ! a_select2( Z, Y ) = T, a_select2( 
% 1.77/2.18    tptp_update2( Z, X, U ), Y ) = T }.
% 1.77/2.18  (13703) {G0,W20,D4,L4,V7,M4}  { leq( n0, skol14( U, W, V0 ) ), ! leq( n0, X
% 1.77/2.20     ), ! leq( X, Y ), a_select2( tptp_update2( Z, Y, T ), X ) = T }.
% 1.77/2.20  (13704) {G0,W20,D4,L4,V6,M4}  { leq( skol14( Y, U, W ), Y ), ! leq( n0, X )
% 1.77/2.20    , ! leq( X, Y ), a_select2( tptp_update2( Z, Y, T ), X ) = T }.
% 1.77/2.20  (13705) {G0,W22,D4,L4,V4,M4}  { ! a_select2( Z, skol14( Y, Z, T ) ) = T, ! 
% 1.77/2.20    leq( n0, X ), ! leq( X, Y ), a_select2( tptp_update2( Z, Y, T ), X ) = T
% 1.77/2.20     }.
% 1.77/2.20  (13706) {G0,W1,D1,L1,V0,M1}  { true }.
% 1.77/2.20  (13707) {G0,W3,D2,L1,V0,M1}  { ! def = use }.
% 1.77/2.20  (13708) {G0,W3,D2,L1,V0,M1}  { leq( n0, pv10 ) }.
% 1.77/2.20  (13709) {G0,W3,D2,L1,V0,M1}  { leq( n0, pv53 ) }.
% 1.77/2.20  (13710) {G0,W3,D2,L1,V0,M1}  { leq( n0, pv54 ) }.
% 1.77/2.20  (13711) {G0,W5,D3,L1,V0,M1}  { leq( pv10, minus( n135300, n1 ) ) }.
% 1.77/2.20  (13712) {G0,W5,D3,L1,V0,M1}  { leq( pv53, minus( n5, n1 ) ) }.
% 1.77/2.20  (13713) {G0,W5,D3,L1,V0,M1}  { leq( pv54, minus( n5, n1 ) ) }.
% 1.77/2.20  (13714) {G0,W27,D3,L7,V0,M7}  { ! leq( n0, n0 ), ! leq( n0, pv10 ), ! leq( 
% 1.77/2.20    n0, pv53 ), ! leq( n0, pv54 ), ! leq( pv10, minus( n135300, n1 ) ), ! leq
% 1.77/2.20    ( pv53, minus( n5, n1 ) ), ! leq( pv54, minus( n5, n1 ) ) }.
% 1.77/2.20  (13715) {G0,W3,D2,L1,V0,M1}  { gt( n5, n4 ) }.
% 1.77/2.20  (13716) {G0,W3,D2,L1,V0,M1}  { gt( n135300, n4 ) }.
% 1.77/2.20  (13717) {G0,W3,D2,L1,V0,M1}  { gt( n135300, n5 ) }.
% 1.77/2.20  (13718) {G0,W3,D2,L1,V0,M1}  { gt( n4, tptp_minus_1 ) }.
% 1.77/2.20  (13719) {G0,W3,D2,L1,V0,M1}  { gt( n5, tptp_minus_1 ) }.
% 1.77/2.20  (13720) {G0,W3,D2,L1,V0,M1}  { gt( n135300, tptp_minus_1 ) }.
% 1.77/2.20  (13721) {G0,W3,D2,L1,V0,M1}  { gt( n0, tptp_minus_1 ) }.
% 1.77/2.20  (13722) {G0,W3,D2,L1,V0,M1}  { gt( n1, tptp_minus_1 ) }.
% 1.77/2.20  (13723) {G0,W3,D2,L1,V0,M1}  { gt( n2, tptp_minus_1 ) }.
% 1.77/2.20  (13724) {G0,W3,D2,L1,V0,M1}  { gt( n3, tptp_minus_1 ) }.
% 1.77/2.20  (13725) {G0,W3,D2,L1,V0,M1}  { gt( n4, n0 ) }.
% 1.77/2.20  (13726) {G0,W3,D2,L1,V0,M1}  { gt( n5, n0 ) }.
% 1.77/2.20  (13727) {G0,W3,D2,L1,V0,M1}  { gt( n135300, n0 ) }.
% 1.77/2.20  (13728) {G0,W3,D2,L1,V0,M1}  { gt( n1, n0 ) }.
% 1.77/2.20  (13729) {G0,W3,D2,L1,V0,M1}  { gt( n2, n0 ) }.
% 1.77/2.20  (13730) {G0,W3,D2,L1,V0,M1}  { gt( n3, n0 ) }.
% 1.77/2.20  (13731) {G0,W3,D2,L1,V0,M1}  { gt( n4, n1 ) }.
% 1.77/2.20  (13732) {G0,W3,D2,L1,V0,M1}  { gt( n5, n1 ) }.
% 1.77/2.20  (13733) {G0,W3,D2,L1,V0,M1}  { gt( n135300, n1 ) }.
% 1.77/2.20  (13734) {G0,W3,D2,L1,V0,M1}  { gt( n2, n1 ) }.
% 1.77/2.20  (13735) {G0,W3,D2,L1,V0,M1}  { gt( n3, n1 ) }.
% 1.77/2.20  (13736) {G0,W3,D2,L1,V0,M1}  { gt( n4, n2 ) }.
% 1.77/2.20  (13737) {G0,W3,D2,L1,V0,M1}  { gt( n5, n2 ) }.
% 1.77/2.20  (13738) {G0,W3,D2,L1,V0,M1}  { gt( n135300, n2 ) }.
% 1.77/2.20  (13739) {G0,W3,D2,L1,V0,M1}  { gt( n3, n2 ) }.
% 1.77/2.20  (13740) {G0,W3,D2,L1,V0,M1}  { gt( n4, n3 ) }.
% 1.77/2.20  (13741) {G0,W3,D2,L1,V0,M1}  { gt( n5, n3 ) }.
% 1.77/2.20  (13742) {G0,W3,D2,L1,V0,M1}  { gt( n135300, n3 ) }.
% 1.77/2.20  (13743) {G0,W21,D2,L7,V1,M7}  { ! leq( n0, X ), ! leq( X, n4 ), X = n0, X =
% 1.77/2.20     n1, X = n2, X = n3, X = n4 }.
% 1.77/2.20  (13744) {G0,W24,D2,L8,V1,M8}  { ! leq( n0, X ), ! leq( X, n5 ), X = n0, X =
% 1.77/2.20     n1, X = n2, X = n3, X = n4, X = n5 }.
% 1.77/2.20  (13745) {G0,W9,D2,L3,V1,M3}  { ! leq( n0, X ), ! leq( X, n0 ), X = n0 }.
% 1.77/2.20  (13746) {G0,W12,D2,L4,V1,M4}  { ! leq( n0, X ), ! leq( X, n1 ), X = n0, X =
% 1.77/2.20     n1 }.
% 1.77/2.20  (13747) {G0,W15,D2,L5,V1,M5}  { ! leq( n0, X ), ! leq( X, n2 ), X = n0, X =
% 1.77/2.20     n1, X = n2 }.
% 1.77/2.20  (13748) {G0,W18,D2,L6,V1,M6}  { ! leq( n0, X ), ! leq( X, n3 ), X = n0, X =
% 1.77/2.20     n1, X = n2, X = n3 }.
% 1.77/2.20  (13749) {G0,W7,D6,L1,V0,M1}  { succ( succ( succ( succ( n0 ) ) ) ) = n4 }.
% 1.77/2.20  (13750) {G0,W8,D7,L1,V0,M1}  { succ( succ( succ( succ( succ( n0 ) ) ) ) ) =
% 1.77/2.20     n5 }.
% 1.77/2.20  (13751) {G0,W4,D3,L1,V0,M1}  { succ( n0 ) = n1 }.
% 1.77/2.20  (13752) {G0,W5,D4,L1,V0,M1}  { succ( succ( n0 ) ) = n2 }.
% 1.77/2.20  (13753) {G0,W6,D5,L1,V0,M1}  { succ( succ( succ( n0 ) ) ) = n3 }.
% 1.77/2.20  
% 1.77/2.20  
% 1.77/2.20  Total Proof:
% 1.77/2.20  
% 1.77/2.20  subsumption: (3) {G0,W3,D2,L1,V1,M1} I { leq( X, X ) }.
% 1.77/2.20  parent0: (13540) {G0,W3,D2,L1,V1,M1}  { leq( X, X ) }.
% 1.77/2.20  substitution0:
% 1.77/2.20     X := X
% 1.77/2.20  end
% 1.77/2.20  permutation0:
% 1.77/2.20     0 ==> 0
% 1.77/2.20  end
% 1.77/2.20  
% 1.77/2.20  subsumption: (146) {G0,W6,D3,L1,V1,M1} I { minus( X, n1 ) ==> pred( X ) }.
% 1.77/2.20  parent0: (13683) {G0,W6,D3,L1,V1,M1}  { minus( X, n1 ) = pred( X ) }.
% 1.77/2.20  substitution0:
% 1.77/2.20     X := X
% 1.77/2.20  end
% 1.77/2.20  permutation0:
% 1.77/2.20     0 ==> 0
% 1.77/2.20  end
% 1.77/2.20  
% 1.77/2.20  subsumption: (171) {G0,W3,D2,L1,V0,M1} I { leq( n0, pv10 ) }.
% 1.77/2.20  parent0: (13708) {G0,W3,D2,L1,V0,M1}  { leq( n0, pv10 ) }.
% 1.77/2.20  substitution0:
% 1.77/2.20  end
% 1.77/2.20  permutation0:
% 1.77/2.20     0 ==> 0
% 1.77/2.20  end
% 1.77/2.20  
% 1.77/2.20  *** allocated 576640 integers for termspace/termends
% 1.77/2.20  subsumption: (172) {G0,W3,D2,L1,V0,M1} I { leq( n0, pv53 ) }.
% 1.77/2.20  parent0: (13709) {G0,W3,D2,L1,V0,M1}  { leq( n0, pv53 ) }.
% 1.77/2.20  substitution0:
% 1.77/2.21  end
% 1.77/2.21  permutation0:
% 1.77/2.21     0 ==> 0
% 1.77/2.21  end
% 1.77/2.21  
% 1.77/2.21  subsumption: (173) {G0,W3,D2,L1,V0,M1} I { leq( n0, pv54 ) }.
% 1.77/2.21  parent0: (13710) {G0,W3,D2,L1,V0,M1}  { leq( n0, pv54 ) }.
% 1.77/2.21  substitution0:
% 1.77/2.21  end
% 1.77/2.21  permutation0:
% 1.77/2.21     0 ==> 0
% 1.77/2.21  end
% 1.77/2.21  
% 1.77/2.21  paramod: (16434) {G1,W4,D3,L1,V0,M1}  { leq( pv10, pred( n135300 ) ) }.
% 1.77/2.21  parent0[0]: (146) {G0,W6,D3,L1,V1,M1} I { minus( X, n1 ) ==> pred( X ) }.
% 1.77/2.21  parent1[0; 2]: (13711) {G0,W5,D3,L1,V0,M1}  { leq( pv10, minus( n135300, n1
% 1.77/2.21     ) ) }.
% 1.77/2.21  substitution0:
% 1.77/2.21     X := n135300
% 1.77/2.21  end
% 1.77/2.21  substitution1:
% 1.77/2.21  end
% 1.77/2.21  
% 1.77/2.21  subsumption: (174) {G1,W4,D3,L1,V0,M1} I;d(146) { leq( pv10, pred( n135300
% 1.77/2.21     ) ) }.
% 1.77/2.21  parent0: (16434) {G1,W4,D3,L1,V0,M1}  { leq( pv10, pred( n135300 ) ) }.
% 1.77/2.21  substitution0:
% 1.77/2.21  end
% 1.77/2.21  permutation0:
% 1.77/2.21     0 ==> 0
% 1.77/2.21  end
% 1.77/2.21  
% 1.77/2.21  paramod: (17141) {G1,W4,D3,L1,V0,M1}  { leq( pv53, pred( n5 ) ) }.
% 1.77/2.21  parent0[0]: (146) {G0,W6,D3,L1,V1,M1} I { minus( X, n1 ) ==> pred( X ) }.
% 1.77/2.21  parent1[0; 2]: (13712) {G0,W5,D3,L1,V0,M1}  { leq( pv53, minus( n5, n1 ) )
% 1.77/2.21     }.
% 1.77/2.21  substitution0:
% 1.77/2.21     X := n5
% 1.77/2.21  end
% 1.77/2.21  substitution1:
% 1.77/2.21  end
% 1.77/2.21  
% 1.77/2.21  subsumption: (175) {G1,W4,D3,L1,V0,M1} I;d(146) { leq( pv53, pred( n5 ) )
% 1.86/2.21     }.
% 1.86/2.21  parent0: (17141) {G1,W4,D3,L1,V0,M1}  { leq( pv53, pred( n5 ) ) }.
% 1.86/2.21  substitution0:
% 1.86/2.21  end
% 1.86/2.21  permutation0:
% 1.86/2.21     0 ==> 0
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  paramod: (17850) {G1,W4,D3,L1,V0,M1}  { leq( pv54, pred( n5 ) ) }.
% 1.86/2.21  parent0[0]: (146) {G0,W6,D3,L1,V1,M1} I { minus( X, n1 ) ==> pred( X ) }.
% 1.86/2.21  parent1[0; 2]: (13713) {G0,W5,D3,L1,V0,M1}  { leq( pv54, minus( n5, n1 ) )
% 1.86/2.21     }.
% 1.86/2.21  substitution0:
% 1.86/2.21     X := n5
% 1.86/2.21  end
% 1.86/2.21  substitution1:
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  subsumption: (176) {G1,W4,D3,L1,V0,M1} I;d(146) { leq( pv54, pred( n5 ) )
% 1.86/2.21     }.
% 1.86/2.21  parent0: (17850) {G1,W4,D3,L1,V0,M1}  { leq( pv54, pred( n5 ) ) }.
% 1.86/2.21  substitution0:
% 1.86/2.21  end
% 1.86/2.21  permutation0:
% 1.86/2.21     0 ==> 0
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  paramod: (18919) {G1,W26,D3,L7,V0,M7}  { ! leq( pv54, pred( n5 ) ), ! leq( 
% 1.86/2.21    n0, n0 ), ! leq( n0, pv10 ), ! leq( n0, pv53 ), ! leq( n0, pv54 ), ! leq
% 1.86/2.21    ( pv10, minus( n135300, n1 ) ), ! leq( pv53, minus( n5, n1 ) ) }.
% 1.86/2.21  parent0[0]: (146) {G0,W6,D3,L1,V1,M1} I { minus( X, n1 ) ==> pred( X ) }.
% 1.86/2.21  parent1[6; 3]: (13714) {G0,W27,D3,L7,V0,M7}  { ! leq( n0, n0 ), ! leq( n0, 
% 1.86/2.21    pv10 ), ! leq( n0, pv53 ), ! leq( n0, pv54 ), ! leq( pv10, minus( n135300
% 1.86/2.21    , n1 ) ), ! leq( pv53, minus( n5, n1 ) ), ! leq( pv54, minus( n5, n1 ) )
% 1.86/2.21     }.
% 1.86/2.21  substitution0:
% 1.86/2.21     X := n5
% 1.86/2.21  end
% 1.86/2.21  substitution1:
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  paramod: (18925) {G1,W25,D3,L7,V0,M7}  { ! leq( pv53, pred( n5 ) ), ! leq( 
% 1.86/2.21    pv54, pred( n5 ) ), ! leq( n0, n0 ), ! leq( n0, pv10 ), ! leq( n0, pv53 )
% 1.86/2.21    , ! leq( n0, pv54 ), ! leq( pv10, minus( n135300, n1 ) ) }.
% 1.86/2.21  parent0[0]: (146) {G0,W6,D3,L1,V1,M1} I { minus( X, n1 ) ==> pred( X ) }.
% 1.86/2.21  parent1[6; 3]: (18919) {G1,W26,D3,L7,V0,M7}  { ! leq( pv54, pred( n5 ) ), !
% 1.86/2.21     leq( n0, n0 ), ! leq( n0, pv10 ), ! leq( n0, pv53 ), ! leq( n0, pv54 ), 
% 1.86/2.21    ! leq( pv10, minus( n135300, n1 ) ), ! leq( pv53, minus( n5, n1 ) ) }.
% 1.86/2.21  substitution0:
% 1.86/2.21     X := n5
% 1.86/2.21  end
% 1.86/2.21  substitution1:
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  paramod: (18927) {G1,W24,D3,L7,V0,M7}  { ! leq( pv10, pred( n135300 ) ), ! 
% 1.86/2.21    leq( pv53, pred( n5 ) ), ! leq( pv54, pred( n5 ) ), ! leq( n0, n0 ), ! 
% 1.86/2.21    leq( n0, pv10 ), ! leq( n0, pv53 ), ! leq( n0, pv54 ) }.
% 1.86/2.21  parent0[0]: (146) {G0,W6,D3,L1,V1,M1} I { minus( X, n1 ) ==> pred( X ) }.
% 1.86/2.21  parent1[6; 3]: (18925) {G1,W25,D3,L7,V0,M7}  { ! leq( pv53, pred( n5 ) ), !
% 1.86/2.21     leq( pv54, pred( n5 ) ), ! leq( n0, n0 ), ! leq( n0, pv10 ), ! leq( n0, 
% 1.86/2.21    pv53 ), ! leq( n0, pv54 ), ! leq( pv10, minus( n135300, n1 ) ) }.
% 1.86/2.21  substitution0:
% 1.86/2.21     X := n135300
% 1.86/2.21  end
% 1.86/2.21  substitution1:
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  resolution: (18928) {G1,W21,D3,L6,V0,M6}  { ! leq( pv10, pred( n135300 ) )
% 1.86/2.21    , ! leq( pv53, pred( n5 ) ), ! leq( pv54, pred( n5 ) ), ! leq( n0, pv10 )
% 1.86/2.21    , ! leq( n0, pv53 ), ! leq( n0, pv54 ) }.
% 1.86/2.21  parent0[3]: (18927) {G1,W24,D3,L7,V0,M7}  { ! leq( pv10, pred( n135300 ) )
% 1.86/2.21    , ! leq( pv53, pred( n5 ) ), ! leq( pv54, pred( n5 ) ), ! leq( n0, n0 ), 
% 1.86/2.21    ! leq( n0, pv10 ), ! leq( n0, pv53 ), ! leq( n0, pv54 ) }.
% 1.86/2.21  parent1[0]: (3) {G0,W3,D2,L1,V1,M1} I { leq( X, X ) }.
% 1.86/2.21  substitution0:
% 1.86/2.21  end
% 1.86/2.21  substitution1:
% 1.86/2.21     X := n0
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  subsumption: (177) {G1,W21,D3,L6,V0,M6} I;d(146);d(146);d(146);r(3) { ! leq
% 1.86/2.21    ( n0, pv10 ), ! leq( n0, pv53 ), ! leq( n0, pv54 ), ! leq( pv10, pred( 
% 1.86/2.21    n135300 ) ), ! leq( pv53, pred( n5 ) ), ! leq( pv54, pred( n5 ) ) }.
% 1.86/2.21  parent0: (18928) {G1,W21,D3,L6,V0,M6}  { ! leq( pv10, pred( n135300 ) ), ! 
% 1.86/2.21    leq( pv53, pred( n5 ) ), ! leq( pv54, pred( n5 ) ), ! leq( n0, pv10 ), ! 
% 1.86/2.21    leq( n0, pv53 ), ! leq( n0, pv54 ) }.
% 1.86/2.21  substitution0:
% 1.86/2.21  end
% 1.86/2.21  permutation0:
% 1.86/2.21     0 ==> 3
% 1.86/2.21     1 ==> 4
% 1.86/2.21     2 ==> 5
% 1.86/2.21     3 ==> 0
% 1.86/2.21     4 ==> 1
% 1.86/2.21     5 ==> 2
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  resolution: (18929) {G1,W18,D3,L5,V0,M5}  { ! leq( n0, pv53 ), ! leq( n0, 
% 1.86/2.21    pv54 ), ! leq( pv10, pred( n135300 ) ), ! leq( pv53, pred( n5 ) ), ! leq
% 1.86/2.21    ( pv54, pred( n5 ) ) }.
% 1.86/2.21  parent0[0]: (177) {G1,W21,D3,L6,V0,M6} I;d(146);d(146);d(146);r(3) { ! leq
% 1.86/2.21    ( n0, pv10 ), ! leq( n0, pv53 ), ! leq( n0, pv54 ), ! leq( pv10, pred( 
% 1.86/2.21    n135300 ) ), ! leq( pv53, pred( n5 ) ), ! leq( pv54, pred( n5 ) ) }.
% 1.86/2.21  parent1[0]: (171) {G0,W3,D2,L1,V0,M1} I { leq( n0, pv10 ) }.
% 1.86/2.21  substitution0:
% 1.86/2.21  end
% 1.86/2.21  substitution1:
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  resolution: (18930) {G1,W15,D3,L4,V0,M4}  { ! leq( n0, pv54 ), ! leq( pv10
% 1.86/2.21    , pred( n135300 ) ), ! leq( pv53, pred( n5 ) ), ! leq( pv54, pred( n5 ) )
% 1.86/2.21     }.
% 1.86/2.21  parent0[0]: (18929) {G1,W18,D3,L5,V0,M5}  { ! leq( n0, pv53 ), ! leq( n0, 
% 1.86/2.21    pv54 ), ! leq( pv10, pred( n135300 ) ), ! leq( pv53, pred( n5 ) ), ! leq
% 1.86/2.21    ( pv54, pred( n5 ) ) }.
% 1.86/2.21  parent1[0]: (172) {G0,W3,D2,L1,V0,M1} I { leq( n0, pv53 ) }.
% 1.86/2.21  substitution0:
% 1.86/2.21  end
% 1.86/2.21  substitution1:
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  resolution: (18931) {G1,W12,D3,L3,V0,M3}  { ! leq( pv10, pred( n135300 ) )
% 1.86/2.21    , ! leq( pv53, pred( n5 ) ), ! leq( pv54, pred( n5 ) ) }.
% 1.86/2.21  parent0[0]: (18930) {G1,W15,D3,L4,V0,M4}  { ! leq( n0, pv54 ), ! leq( pv10
% 1.86/2.21    , pred( n135300 ) ), ! leq( pv53, pred( n5 ) ), ! leq( pv54, pred( n5 ) )
% 1.86/2.21     }.
% 1.86/2.21  parent1[0]: (173) {G0,W3,D2,L1,V0,M1} I { leq( n0, pv54 ) }.
% 1.86/2.21  substitution0:
% 1.86/2.21  end
% 1.86/2.21  substitution1:
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  resolution: (18932) {G2,W8,D3,L2,V0,M2}  { ! leq( pv53, pred( n5 ) ), ! leq
% 1.86/2.21    ( pv54, pred( n5 ) ) }.
% 1.86/2.21  parent0[0]: (18931) {G1,W12,D3,L3,V0,M3}  { ! leq( pv10, pred( n135300 ) )
% 1.86/2.21    , ! leq( pv53, pred( n5 ) ), ! leq( pv54, pred( n5 ) ) }.
% 1.86/2.21  parent1[0]: (174) {G1,W4,D3,L1,V0,M1} I;d(146) { leq( pv10, pred( n135300 )
% 1.86/2.21     ) }.
% 1.86/2.21  substitution0:
% 1.86/2.21  end
% 1.86/2.21  substitution1:
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  resolution: (18933) {G2,W4,D3,L1,V0,M1}  { ! leq( pv54, pred( n5 ) ) }.
% 1.86/2.21  parent0[0]: (18932) {G2,W8,D3,L2,V0,M2}  { ! leq( pv53, pred( n5 ) ), ! leq
% 1.86/2.21    ( pv54, pred( n5 ) ) }.
% 1.86/2.21  parent1[0]: (175) {G1,W4,D3,L1,V0,M1} I;d(146) { leq( pv53, pred( n5 ) )
% 1.86/2.21     }.
% 1.86/2.21  substitution0:
% 1.86/2.21  end
% 1.86/2.21  substitution1:
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  resolution: (18934) {G2,W0,D0,L0,V0,M0}  {  }.
% 1.86/2.21  parent0[0]: (18933) {G2,W4,D3,L1,V0,M1}  { ! leq( pv54, pred( n5 ) ) }.
% 1.86/2.21  parent1[0]: (176) {G1,W4,D3,L1,V0,M1} I;d(146) { leq( pv54, pred( n5 ) )
% 1.86/2.21     }.
% 1.86/2.21  substitution0:
% 1.86/2.21  end
% 1.86/2.21  substitution1:
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  subsumption: (13535) {G2,W0,D0,L0,V0,M0} S(177);r(171);r(172);r(173);r(174)
% 1.86/2.21    ;r(175);r(176) {  }.
% 1.86/2.21  parent0: (18934) {G2,W0,D0,L0,V0,M0}  {  }.
% 1.86/2.21  substitution0:
% 1.86/2.21  end
% 1.86/2.21  permutation0:
% 1.86/2.21  end
% 1.86/2.21  
% 1.86/2.21  Proof check complete!
% 1.86/2.21  
% 1.86/2.21  Memory use:
% 1.86/2.21  
% 1.86/2.21  space for terms:        332518
% 1.86/2.21  space for clauses:      604564
% 1.86/2.21  
% 1.86/2.21  
% 1.86/2.21  clauses generated:      47716
% 1.86/2.21  clauses kept:           13536
% 1.86/2.21  clauses selected:       848
% 1.86/2.21  clauses deleted:        15
% 1.86/2.21  clauses inuse deleted:  12
% 1.86/2.21  
% 1.86/2.21  subsentry:          187274
% 1.86/2.21  literals s-matched: 74239
% 1.86/2.21  literals matched:   59874
% 1.86/2.21  full subsumption:   40390
% 1.86/2.21  
% 1.86/2.21  checksum:           -289167624
% 1.86/2.21  
% 1.86/2.21  
% 1.86/2.21  Bliksem ended
%------------------------------------------------------------------------------