TSTP Solution File: SWV048+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SWV048+1 : TPTP v8.1.2. Bugfixed v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n008.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 23:02:21 EDT 2023

% Result   : Theorem 0.21s 0.57s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : SWV048+1 : TPTP v8.1.2. Bugfixed v3.3.0.
% 0.00/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.36  % Computer : n008.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit : 300
% 0.14/0.36  % WCLimit  : 300
% 0.14/0.36  % DateTime : Tue Aug 29 09:48:47 EDT 2023
% 0.14/0.36  % CPUTime  : 
% 0.21/0.57  Command-line arguments: --kbo-weight0 --lhs-weight 5 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10 --goal-heuristic
% 0.21/0.57  
% 0.21/0.57  % SZS status Theorem
% 0.21/0.57  
% 0.21/0.58  % SZS output start Proof
% 0.21/0.58  Take the following subset of the input axioms:
% 0.21/0.58    fof(cl5_nebula_norm_0016, conjecture, (pv78=sum(n0, minus(n135300, n1), a_select3(q, pv79, pv35)) & (leq(n0, pv35) & leq(pv35, minus(n5, n1)))) => ((n0!=pv78 => (n0=sum(n0, minus(n0, n1), times(a_select3(q, pv81, pv35), a_select2(x, pv81))) & (pv78=sum(n0, minus(n135300, n1), a_select3(q, pv79, pv35)) & (leq(n0, pv35) & leq(pv35, minus(n5, n1)))))) & (n0=pv78 => true))).
% 0.21/0.58    fof(pred_minus_1, axiom, ![X]: minus(X, n1)=pred(X)).
% 0.21/0.58    fof(pred_succ, axiom, ![X2]: pred(succ(X2))=X2).
% 0.21/0.58    fof(succ_tptp_minus_1, axiom, succ(tptp_minus_1)=n0).
% 0.21/0.58    fof(sum_plus_base, axiom, ![Body]: sum(n0, tptp_minus_1, Body)=n0).
% 0.21/0.58    fof(ttrue, axiom, true).
% 0.21/0.58  
% 0.21/0.58  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.58  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.58  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.58    fresh(y, y, x1...xn) = u
% 0.21/0.58    C => fresh(s, t, x1...xn) = v
% 0.21/0.58  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.58  variables of u and v.
% 0.21/0.58  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.58  input problem has no model of domain size 1).
% 0.21/0.58  
% 0.21/0.58  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.58  
% 0.21/0.58  Axiom 1 (ttrue): true = true3.
% 0.21/0.58  Axiom 2 (cl5_nebula_norm_0016_1): leq(n0, pv35) = true3.
% 0.21/0.58  Axiom 3 (succ_tptp_minus_1): succ(tptp_minus_1) = n0.
% 0.21/0.58  Axiom 4 (pred_minus_1): minus(X, n1) = pred(X).
% 0.21/0.58  Axiom 5 (cl5_nebula_norm_0016_2): leq(pv35, minus(n5, n1)) = true3.
% 0.21/0.58  Axiom 6 (sum_plus_base): sum(n0, tptp_minus_1, X) = n0.
% 0.21/0.58  Axiom 7 (pred_succ): pred(succ(X)) = X.
% 0.21/0.58  Axiom 8 (cl5_nebula_norm_0016): pv78 = sum(n0, minus(n135300, n1), a_select3(q, pv79, pv35)).
% 0.21/0.58  
% 0.21/0.58  Goal 1 (cl5_nebula_norm_0016_4): tuple2(n0, pv78, leq(n0, pv35), leq(pv35, minus(n5, n1)), true) = tuple2(sum(n0, minus(n0, n1), times(a_select3(q, pv81, pv35), a_select2(x, pv81))), sum(n0, minus(n135300, n1), a_select3(q, pv79, pv35)), true3, true3, true3).
% 0.21/0.58  Proof:
% 0.21/0.58    tuple2(n0, pv78, leq(n0, pv35), leq(pv35, minus(n5, n1)), true)
% 0.21/0.58  = { by axiom 2 (cl5_nebula_norm_0016_1) }
% 0.21/0.58    tuple2(n0, pv78, true3, leq(pv35, minus(n5, n1)), true)
% 0.21/0.58  = { by axiom 5 (cl5_nebula_norm_0016_2) }
% 0.21/0.58    tuple2(n0, pv78, true3, true3, true)
% 0.21/0.58  = { by axiom 1 (ttrue) }
% 0.21/0.58    tuple2(n0, pv78, true3, true3, true3)
% 0.21/0.58  = { by axiom 6 (sum_plus_base) R->L }
% 0.21/0.58    tuple2(sum(n0, tptp_minus_1, times(a_select3(q, pv81, pv35), a_select2(x, pv81))), pv78, true3, true3, true3)
% 0.21/0.58  = { by axiom 7 (pred_succ) R->L }
% 0.21/0.58    tuple2(sum(n0, pred(succ(tptp_minus_1)), times(a_select3(q, pv81, pv35), a_select2(x, pv81))), pv78, true3, true3, true3)
% 0.21/0.58  = { by axiom 4 (pred_minus_1) R->L }
% 0.21/0.58    tuple2(sum(n0, minus(succ(tptp_minus_1), n1), times(a_select3(q, pv81, pv35), a_select2(x, pv81))), pv78, true3, true3, true3)
% 0.21/0.58  = { by axiom 3 (succ_tptp_minus_1) }
% 0.21/0.58    tuple2(sum(n0, minus(n0, n1), times(a_select3(q, pv81, pv35), a_select2(x, pv81))), pv78, true3, true3, true3)
% 0.21/0.58  = { by axiom 8 (cl5_nebula_norm_0016) }
% 0.21/0.58    tuple2(sum(n0, minus(n0, n1), times(a_select3(q, pv81, pv35), a_select2(x, pv81))), sum(n0, minus(n135300, n1), a_select3(q, pv79, pv35)), true3, true3, true3)
% 0.21/0.58  % SZS output end Proof
% 0.21/0.58  
% 0.21/0.58  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------