TSTP Solution File: SWC349+1 by Vampire---4.8

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Vampire---4.8
% Problem  : SWC349+1 : TPTP v8.1.2. Released v2.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : vampire --input_syntax tptp --proof tptp --output_axiom_names on --mode portfolio --schedule file --schedule_file /export/starexec/sandbox/solver/bin/quickGreedyProduceRating_steal_pow3.txt --cores 8 -m 12000 -t %d %s

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed May  1 04:01:38 EDT 2024

% Result   : Theorem 0.55s 0.75s
% Output   : Refutation 0.55s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    7
%            Number of leaves      :    6
% Syntax   : Number of formulae    :   20 (   7 unt;   0 def)
%            Number of atoms       :  120 (  42 equ)
%            Maximal formula atoms :   18 (   6 avg)
%            Number of connectives :  125 (  25   ~;  11   |;  76   &)
%                                         (   0 <=>;  13  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   15 (   7 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :    5 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   5 con; 0-0 aty)
%            Number of variables   :   36 (  12   !;  24   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(f162,plain,
    $false,
    inference(unit_resulting_resolution,[],[f127,f146,f153]) ).

fof(f153,plain,
    ! [X0] :
      ( frontsegP(X0,sK2)
      | ~ ssList(X0) ),
    inference(definition_unfolding,[],[f138,f128]) ).

fof(f128,plain,
    nil = sK2,
    inference(cnf_transformation,[],[f117]) ).

fof(f117,plain,
    ( ~ frontsegP(sK1,sK0)
    & neq(sK1,nil)
    & sK0 = sK2
    & sK1 = sK3
    & nil = sK2
    & ssList(sK3)
    & ssList(sK2)
    & ssList(sK1)
    & ssList(sK0) ),
    inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f101,f116,f115,f114,f113]) ).

fof(f113,plain,
    ( ? [X0] :
        ( ? [X1] :
            ( ? [X2] :
                ( ? [X3] :
                    ( ~ frontsegP(X1,X0)
                    & neq(X1,nil)
                    & X0 = X2
                    & X1 = X3
                    & nil = X2
                    & ssList(X3) )
                & ssList(X2) )
            & ssList(X1) )
        & ssList(X0) )
   => ( ? [X1] :
          ( ? [X2] :
              ( ? [X3] :
                  ( ~ frontsegP(X1,sK0)
                  & neq(X1,nil)
                  & sK0 = X2
                  & X1 = X3
                  & nil = X2
                  & ssList(X3) )
              & ssList(X2) )
          & ssList(X1) )
      & ssList(sK0) ) ),
    introduced(choice_axiom,[]) ).

fof(f114,plain,
    ( ? [X1] :
        ( ? [X2] :
            ( ? [X3] :
                ( ~ frontsegP(X1,sK0)
                & neq(X1,nil)
                & sK0 = X2
                & X1 = X3
                & nil = X2
                & ssList(X3) )
            & ssList(X2) )
        & ssList(X1) )
   => ( ? [X2] :
          ( ? [X3] :
              ( ~ frontsegP(sK1,sK0)
              & neq(sK1,nil)
              & sK0 = X2
              & sK1 = X3
              & nil = X2
              & ssList(X3) )
          & ssList(X2) )
      & ssList(sK1) ) ),
    introduced(choice_axiom,[]) ).

fof(f115,plain,
    ( ? [X2] :
        ( ? [X3] :
            ( ~ frontsegP(sK1,sK0)
            & neq(sK1,nil)
            & sK0 = X2
            & sK1 = X3
            & nil = X2
            & ssList(X3) )
        & ssList(X2) )
   => ( ? [X3] :
          ( ~ frontsegP(sK1,sK0)
          & neq(sK1,nil)
          & sK0 = sK2
          & sK1 = X3
          & nil = sK2
          & ssList(X3) )
      & ssList(sK2) ) ),
    introduced(choice_axiom,[]) ).

fof(f116,plain,
    ( ? [X3] :
        ( ~ frontsegP(sK1,sK0)
        & neq(sK1,nil)
        & sK0 = sK2
        & sK1 = X3
        & nil = sK2
        & ssList(X3) )
   => ( ~ frontsegP(sK1,sK0)
      & neq(sK1,nil)
      & sK0 = sK2
      & sK1 = sK3
      & nil = sK2
      & ssList(sK3) ) ),
    introduced(choice_axiom,[]) ).

fof(f101,plain,
    ? [X0] :
      ( ? [X1] :
          ( ? [X2] :
              ( ? [X3] :
                  ( ~ frontsegP(X1,X0)
                  & neq(X1,nil)
                  & X0 = X2
                  & X1 = X3
                  & nil = X2
                  & ssList(X3) )
              & ssList(X2) )
          & ssList(X1) )
      & ssList(X0) ),
    inference(flattening,[],[f100]) ).

fof(f100,plain,
    ? [X0] :
      ( ? [X1] :
          ( ? [X2] :
              ( ? [X3] :
                  ( ~ frontsegP(X1,X0)
                  & neq(X1,nil)
                  & X0 = X2
                  & X1 = X3
                  & nil = X2
                  & ssList(X3) )
              & ssList(X2) )
          & ssList(X1) )
      & ssList(X0) ),
    inference(ennf_transformation,[],[f97]) ).

fof(f97,negated_conjecture,
    ~ ! [X0] :
        ( ssList(X0)
       => ! [X1] :
            ( ssList(X1)
           => ! [X2] :
                ( ssList(X2)
               => ! [X3] :
                    ( ssList(X3)
                   => ( frontsegP(X1,X0)
                      | ~ neq(X1,nil)
                      | X0 != X2
                      | X1 != X3
                      | nil != X2 ) ) ) ) ),
    inference(negated_conjecture,[],[f96]) ).

fof(f96,conjecture,
    ! [X0] :
      ( ssList(X0)
     => ! [X1] :
          ( ssList(X1)
         => ! [X2] :
              ( ssList(X2)
             => ! [X3] :
                  ( ssList(X3)
                 => ( frontsegP(X1,X0)
                    | ~ neq(X1,nil)
                    | X0 != X2
                    | X1 != X3
                    | nil != X2 ) ) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.wLH1hqXVJk/Vampire---4.8_10482',co1) ).

fof(f138,plain,
    ! [X0] :
      ( frontsegP(X0,nil)
      | ~ ssList(X0) ),
    inference(cnf_transformation,[],[f104]) ).

fof(f104,plain,
    ! [X0] :
      ( frontsegP(X0,nil)
      | ~ ssList(X0) ),
    inference(ennf_transformation,[],[f45]) ).

fof(f45,axiom,
    ! [X0] :
      ( ssList(X0)
     => frontsegP(X0,nil) ),
    file('/export/starexec/sandbox/tmp/tmp.wLH1hqXVJk/Vampire---4.8_10482',ax45) ).

fof(f146,plain,
    ~ frontsegP(sK3,sK2),
    inference(definition_unfolding,[],[f132,f129,f130]) ).

fof(f130,plain,
    sK0 = sK2,
    inference(cnf_transformation,[],[f117]) ).

fof(f129,plain,
    sK1 = sK3,
    inference(cnf_transformation,[],[f117]) ).

fof(f132,plain,
    ~ frontsegP(sK1,sK0),
    inference(cnf_transformation,[],[f117]) ).

fof(f127,plain,
    ssList(sK3),
    inference(cnf_transformation,[],[f117]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem    : SWC349+1 : TPTP v8.1.2. Released v2.4.0.
% 0.07/0.15  % Command    : vampire --input_syntax tptp --proof tptp --output_axiom_names on --mode portfolio --schedule file --schedule_file /export/starexec/sandbox/solver/bin/quickGreedyProduceRating_steal_pow3.txt --cores 8 -m 12000 -t %d %s
% 0.15/0.36  % Computer : n025.cluster.edu
% 0.15/0.36  % Model    : x86_64 x86_64
% 0.15/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.36  % Memory   : 8042.1875MB
% 0.15/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.36  % CPULimit   : 300
% 0.15/0.36  % WCLimit    : 300
% 0.15/0.36  % DateTime   : Tue Apr 30 18:36:41 EDT 2024
% 0.15/0.36  % CPUTime    : 
% 0.15/0.36  This is a FOF_THM_RFO_SEQ problem
% 0.15/0.36  Running vampire --input_syntax tptp --proof tptp --output_axiom_names on --mode portfolio --schedule file --schedule_file /export/starexec/sandbox/solver/bin/quickGreedyProduceRating_steal_pow3.txt --cores 8 -m 12000 -t 300 /export/starexec/sandbox/tmp/tmp.wLH1hqXVJk/Vampire---4.8_10482
% 0.55/0.75  % (10741)lrs+21_1:5_sil=2000:sos=on:urr=on:newcnf=on:slsq=on:i=83:slsql=off:bd=off:nm=2:ss=axioms:st=1.5:sp=const_min:gsp=on:rawr=on_0 on Vampire---4 for (2996ds/83Mi)
% 0.55/0.75  % (10735)dis-1011_2:1_sil=2000:lsd=20:nwc=5.0:flr=on:mep=off:st=3.0:i=34:sd=1:ep=RS:ss=axioms_0 on Vampire---4 for (2996ds/34Mi)
% 0.55/0.75  % (10738)ott+1011_1:1_sil=2000:urr=on:i=33:sd=1:kws=inv_frequency:ss=axioms:sup=off_0 on Vampire---4 for (2996ds/33Mi)
% 0.55/0.75  % (10736)lrs+1011_461:32768_sil=16000:irw=on:sp=frequency:lsd=20:fd=preordered:nwc=10.0:s2agt=32:alpa=false:cond=fast:s2a=on:i=51:s2at=3.0:awrs=decay:awrsf=691:bd=off:nm=20:fsr=off:amm=sco:uhcvi=on:rawr=on_0 on Vampire---4 for (2996ds/51Mi)
% 0.55/0.75  % (10737)lrs+1011_1:1_sil=8000:sp=occurrence:nwc=10.0:i=78:ss=axioms:sgt=8_0 on Vampire---4 for (2996ds/78Mi)
% 0.55/0.75  % (10742)lrs-21_1:1_to=lpo:sil=2000:sp=frequency:sos=on:lma=on:i=56:sd=2:ss=axioms:ep=R_0 on Vampire---4 for (2996ds/56Mi)
% 0.55/0.75  % (10739)lrs+2_1:1_sil=16000:fde=none:sos=all:nwc=5.0:i=34:ep=RS:s2pl=on:lma=on:afp=100000_0 on Vampire---4 for (2996ds/34Mi)
% 0.55/0.75  % (10740)lrs+1002_1:16_to=lpo:sil=32000:sp=unary_frequency:sos=on:i=45:bd=off:ss=axioms_0 on Vampire---4 for (2996ds/45Mi)
% 0.55/0.75  % (10738)First to succeed.
% 0.55/0.75  % (10741)Also succeeded, but the first one will report.
% 0.55/0.75  % (10735)Also succeeded, but the first one will report.
% 0.55/0.75  % (10738)Refutation found. Thanks to Tanya!
% 0.55/0.75  % SZS status Theorem for Vampire---4
% 0.55/0.75  % SZS output start Proof for Vampire---4
% See solution above
% 0.55/0.75  % (10738)------------------------------
% 0.55/0.75  % (10738)Version: Vampire 4.8 (commit 8e9376e55 on 2024-01-18 13:49:33 +0100)
% 0.55/0.75  % (10738)Termination reason: Refutation
% 0.55/0.75  
% 0.55/0.75  % (10738)Memory used [KB]: 1138
% 0.55/0.75  % (10738)Time elapsed: 0.004 s
% 0.55/0.75  % (10738)Instructions burned: 4 (million)
% 0.55/0.75  % (10738)------------------------------
% 0.55/0.75  % (10738)------------------------------
% 0.55/0.75  % (10731)Success in time 0.382 s
% 0.55/0.75  % Vampire---4.8 exiting
%------------------------------------------------------------------------------