TSTP Solution File: SWB007+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SWB007+1 : TPTP v8.1.2. Released v5.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n008.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 20:12:44 EDT 2023

% Result   : Theorem 93.23s 12.55s
% Output   : Proof 93.23s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : SWB007+1 : TPTP v8.1.2. Released v5.2.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n008.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Sun Aug 27 07:38:02 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 93.23/12.55  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 93.23/12.55  
% 93.23/12.55  % SZS status Theorem
% 93.23/12.55  
% 93.23/12.55  % SZS output start Proof
% 93.23/12.55  Take the following subset of the input axioms:
% 93.23/12.55    fof(owl_eqdis_sameas, axiom, ![X, Y]: (iext(uri_owl_sameAs, X, Y) <=> X=Y)).
% 93.23/12.55    fof(testcase_conclusion_fullish_007_Equal_Classes, conjecture, iext(uri_rdf_type, uri_ex_w, uri_ex_c2) & (iext(uri_rdfs_subClassOf, uri_ex_c, uri_ex_c2) & iext(uri_rdfs_range, uri_ex_p, uri_ex_c2))).
% 93.23/12.55    fof(testcase_premise_fullish_007_Equal_Classes, axiom, iext(uri_owl_sameAs, uri_ex_c1, uri_ex_c2) & (iext(uri_rdf_type, uri_ex_w, uri_ex_c1) & (iext(uri_rdfs_subClassOf, uri_ex_c, uri_ex_c1) & iext(uri_rdfs_range, uri_ex_p, uri_ex_c1)))).
% 93.23/12.55  
% 93.23/12.55  Now clausify the problem and encode Horn clauses using encoding 3 of
% 93.23/12.55  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 93.23/12.55  We repeatedly replace C & s=t => u=v by the two clauses:
% 93.23/12.55    fresh(y, y, x1...xn) = u
% 93.23/12.55    C => fresh(s, t, x1...xn) = v
% 93.23/12.55  where fresh is a fresh function symbol and x1..xn are the free
% 93.23/12.55  variables of u and v.
% 93.23/12.55  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 93.23/12.55  input problem has no model of domain size 1).
% 93.23/12.55  
% 93.23/12.55  The encoding turns the above axioms into the following unit equations and goals:
% 93.23/12.55  
% 93.23/12.55  Axiom 1 (testcase_premise_fullish_007_Equal_Classes): iext(uri_rdf_type, uri_ex_w, uri_ex_c1) = true2.
% 93.23/12.55  Axiom 2 (testcase_premise_fullish_007_Equal_Classes_1): iext(uri_rdfs_range, uri_ex_p, uri_ex_c1) = true2.
% 93.23/12.55  Axiom 3 (testcase_premise_fullish_007_Equal_Classes_2): iext(uri_rdfs_subClassOf, uri_ex_c, uri_ex_c1) = true2.
% 93.23/12.55  Axiom 4 (testcase_premise_fullish_007_Equal_Classes_3): iext(uri_owl_sameAs, uri_ex_c1, uri_ex_c2) = true2.
% 93.23/12.55  Axiom 5 (owl_eqdis_sameas_1): fresh(X, X, Y, Z) = Z.
% 93.23/12.55  Axiom 6 (owl_eqdis_sameas_1): fresh(iext(uri_owl_sameAs, X, Y), true2, X, Y) = X.
% 93.23/12.55  
% 93.23/12.55  Lemma 7: uri_ex_c1 = uri_ex_c2.
% 93.23/12.55  Proof:
% 93.23/12.55    uri_ex_c1
% 93.23/12.55  = { by axiom 6 (owl_eqdis_sameas_1) R->L }
% 93.23/12.55    fresh(iext(uri_owl_sameAs, uri_ex_c1, uri_ex_c2), true2, uri_ex_c1, uri_ex_c2)
% 93.23/12.55  = { by axiom 4 (testcase_premise_fullish_007_Equal_Classes_3) }
% 93.23/12.55    fresh(true2, true2, uri_ex_c1, uri_ex_c2)
% 93.23/12.55  = { by axiom 5 (owl_eqdis_sameas_1) }
% 93.23/12.55    uri_ex_c2
% 93.23/12.55  
% 93.23/12.55  Goal 1 (testcase_conclusion_fullish_007_Equal_Classes): tuple6(iext(uri_rdf_type, uri_ex_w, uri_ex_c2), iext(uri_rdfs_range, uri_ex_p, uri_ex_c2), iext(uri_rdfs_subClassOf, uri_ex_c, uri_ex_c2)) = tuple6(true2, true2, true2).
% 93.23/12.55  Proof:
% 93.23/12.55    tuple6(iext(uri_rdf_type, uri_ex_w, uri_ex_c2), iext(uri_rdfs_range, uri_ex_p, uri_ex_c2), iext(uri_rdfs_subClassOf, uri_ex_c, uri_ex_c2))
% 93.23/12.55  = { by lemma 7 R->L }
% 93.23/12.55    tuple6(iext(uri_rdf_type, uri_ex_w, uri_ex_c1), iext(uri_rdfs_range, uri_ex_p, uri_ex_c2), iext(uri_rdfs_subClassOf, uri_ex_c, uri_ex_c2))
% 93.23/12.55  = { by axiom 1 (testcase_premise_fullish_007_Equal_Classes) }
% 93.23/12.55    tuple6(true2, iext(uri_rdfs_range, uri_ex_p, uri_ex_c2), iext(uri_rdfs_subClassOf, uri_ex_c, uri_ex_c2))
% 93.23/12.55  = { by lemma 7 R->L }
% 93.23/12.55    tuple6(true2, iext(uri_rdfs_range, uri_ex_p, uri_ex_c1), iext(uri_rdfs_subClassOf, uri_ex_c, uri_ex_c2))
% 93.23/12.55  = { by axiom 2 (testcase_premise_fullish_007_Equal_Classes_1) }
% 93.23/12.55    tuple6(true2, true2, iext(uri_rdfs_subClassOf, uri_ex_c, uri_ex_c2))
% 93.23/12.55  = { by lemma 7 R->L }
% 93.23/12.55    tuple6(true2, true2, iext(uri_rdfs_subClassOf, uri_ex_c, uri_ex_c1))
% 93.23/12.55  = { by axiom 3 (testcase_premise_fullish_007_Equal_Classes_2) }
% 93.23/12.55    tuple6(true2, true2, true2)
% 93.23/12.55  % SZS output end Proof
% 93.23/12.55  
% 93.23/12.55  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------