TSTP Solution File: SEV122^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV122^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n109.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:46 EDT 2014

% Result   : Theorem 0.65s
% Output   : Proof 0.65s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV122^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n109.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 08:09:26 CDT 2014
% % CPUTime  : 0.65 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x19dc758>, <kernel.Type object at 0x19dc050>) of role type named a_type
% Using role type
% Declaring a:Type
% FOF formula (forall (PROP:((a->(a->Prop))->Prop)), (((a->(a->Prop))->Prop)->(((eq (a->(a->Prop))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))))) of role conjecture named cTHM530_pme
% Conjecture to prove = (forall (PROP:((a->(a->Prop))->Prop)), (((a->(a->Prop))->Prop)->(((eq (a->(a->Prop))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))))):Prop
% Parameter a_DUMMY:a.
% We need to prove ['(forall (PROP:((a->(a->Prop))->Prop)), (((a->(a->Prop))->Prop)->(((eq (a->(a->Prop))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy)))))))']
% Parameter a:Type.
% Trying to prove (forall (PROP:((a->(a->Prop))->Prop)), (((a->(a->Prop))->Prop)->(((eq (a->(a->Prop))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy)))))))
% Found eta_expansion000:=(eta_expansion00 (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))):(((eq (a->(a->Prop))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) (fun (x:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp x) Xy)))))
% Found (eta_expansion00 (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) as proof of (((eq (a->(a->Prop))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy)))))
% Found ((eta_expansion0 (a->Prop)) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) as proof of (((eq (a->(a->Prop))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy)))))
% Found (((eta_expansion a) (a->Prop)) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) as proof of (((eq (a->(a->Prop))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy)))))
% Found (fun (F:((a->(a->Prop))->Prop))=> (((eta_expansion a) (a->Prop)) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy)))))) as proof of (((eq (a->(a->Prop))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy)))))
% Found (fun (PROP:((a->(a->Prop))->Prop)) (F:((a->(a->Prop))->Prop))=> (((eta_expansion a) (a->Prop)) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy)))))) as proof of (((a->(a->Prop))->Prop)->(((eq (a->(a->Prop))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))))
% Found (fun (PROP:((a->(a->Prop))->Prop)) (F:((a->(a->Prop))->Prop))=> (((eta_expansion a) (a->Prop)) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy)))))) as proof of (forall (PROP:((a->(a->Prop))->Prop)), (((a->(a->Prop))->Prop)->(((eq (a->(a->Prop))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy)))))))
% Got proof (fun (PROP:((a->(a->Prop))->Prop)) (F:((a->(a->Prop))->Prop))=> (((eta_expansion a) (a->Prop)) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))))
% Time elapsed = 0.328806s
% node=14 cost=-270.000000 depth=5
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (PROP:((a->(a->Prop))->Prop)) (F:((a->(a->Prop))->Prop))=> (((eta_expansion a) (a->Prop)) (fun (Xx:a) (Xy:a)=> (forall (Xp:(a->(a->Prop))), (((and (forall (Xx0:a) (Xy0:a), (((ex (a->(a->Prop))) (fun (R:(a->(a->Prop)))=> ((R Xx0) Xy0)))->((Xp Xx0) Xy0)))) (PROP Xp))->((Xp Xx) Xy))))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------