TSTP Solution File: SEU934^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU934^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n118.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:24 EDT 2014

% Result   : Timeout 300.01s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU934^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n118.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:43:36 CDT 2014
% % CPUTime  : 300.01 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (forall (Xx:fofType) (Xy:fofType), ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Y) Xx))) (fun (Y:fofType)=> (((eq fofType) Y) Xy)))->(((eq fofType) Xx) Xy))) of role conjecture named cTHM14_pme
% Conjecture to prove = (forall (Xx:fofType) (Xy:fofType), ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Y) Xx))) (fun (Y:fofType)=> (((eq fofType) Y) Xy)))->(((eq fofType) Xx) Xy))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(forall (Xx:fofType) (Xy:fofType), ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Y) Xx))) (fun (Y:fofType)=> (((eq fofType) Y) Xy)))->(((eq fofType) Xx) Xy)))']
% Parameter fofType:Type.
% Trying to prove (forall (Xx:fofType) (Xy:fofType), ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Y) Xx))) (fun (Y:fofType)=> (((eq fofType) Y) Xy)))->(((eq fofType) Xx) Xy)))
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xx))):((P Xx)->(P Xx))
% Found (x (fun (x0:(fofType->Prop))=> (P Xx))) as proof of (P0 Xx)
% Found (x (fun (x0:(fofType->Prop))=> (P Xx))) as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found x0:(P Xx)
% Instantiate: b:=Xx:fofType
% Found x0 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (P b)
% Found ((eq_ref fofType) b) as proof of (P b)
% Found ((eq_ref fofType) b) as proof of (P b)
% Found ((eq_ref fofType) b) as proof of (P b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xx))):((P Xx)->(P Xx))
% Found (x (fun (x0:(fofType->Prop))=> (P Xx))) as proof of (P0 Xx)
% Found (x (fun (x0:(fofType->Prop))=> (P Xx))) as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found x0:(P Xy)
% Instantiate: b:=Xy:fofType
% Found x0 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xx))):((P Xx)->(P Xx))
% Found (x (fun (x0:(fofType->Prop))=> (P Xx))) as proof of (P0 Xx)
% Found (x (fun (x0:(fofType->Prop))=> (P Xx))) as proof of (P0 Xx)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x0:(P Xx)
% Instantiate: b:=Xx:fofType
% Found x0 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (P b)
% Found ((eq_ref fofType) b) as proof of (P b)
% Found ((eq_ref fofType) b) as proof of (P b)
% Found ((eq_ref fofType) b) as proof of (P b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xx))):((P Xx)->(P Xx))
% Found (x (fun (x0:(fofType->Prop))=> (P Xx))) as proof of (P0 Xx)
% Found (x (fun (x0:(fofType->Prop))=> (P Xx))) as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found x0:(P Xy)
% Instantiate: b:=Xy:fofType
% Found x0 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found x0:(P Xx)
% Instantiate: a:=Xx:fofType
% Found x0 as proof of (P0 a)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found x0:(P1 Xy)
% Instantiate: b:=Xy:fofType
% Found x0 as proof of (P2 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found x0:(P1 Xy)
% Instantiate: b:=Xy:fofType
% Found x0 as proof of (P2 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found x0:(P b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:(P Xy)
% Instantiate: b:=Xy:fofType
% Found x0 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P0 Xy))):((P0 Xy)->(P0 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P0 Xy))) as proof of (P1 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P0 Xy))) as proof of (P1 Xy)
% Found x0:(P Xy)
% Instantiate: a:=Xy:fofType
% Found x0 as proof of (P0 a)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:(P b)
% Found x0 as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:(P Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x0:(P Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b0))):((P b0)->(P b0))
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (P Xx)
% Found ((eq_ref fofType) Xx) as proof of (P Xx)
% Found ((eq_ref fofType) Xx) as proof of (P Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:(P Xy)
% Found x0 as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found x0:(P b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (P b0)
% Found ((eq_ref fofType) b) as proof of (P b0)
% Found ((eq_ref fofType) b) as proof of (P b0)
% Found ((eq_ref fofType) b) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (P Xy)
% Found ((eq_ref fofType) Xy) as proof of (P Xy)
% Found ((eq_ref fofType) Xy) as proof of (P Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b0))):((P b0)->(P b0))
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found eq_ref00:=(eq_ref0 b00):(((eq fofType) b00) b00)
% Found (eq_ref0 b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found eq_ref00:=(eq_ref0 b00):(((eq fofType) b00) b00)
% Found (eq_ref0 b00) as proof of (((eq fofType) b00) Xy)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) Xy)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) Xy)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b00)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b00)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b00)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b00)
% Found x0:(P Xx)
% Instantiate: a:=Xx:fofType
% Found x0 as proof of (P0 a)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found ((eq_ref fofType) b) as proof of (P1 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found x0:(P1 Xy)
% Instantiate: b:=Xy:fofType
% Found x0 as proof of (P2 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found x0:(P1 Xy)
% Instantiate: b:=Xy:fofType
% Found x0 as proof of (P2 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found x0:(P b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:(P b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:(P Xy)
% Instantiate: b:=Xy:fofType
% Found x0 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P0 Xy))):((P0 Xy)->(P0 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P0 Xy))) as proof of (P1 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P0 Xy))) as proof of (P1 Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found x0:(P Xy)
% Instantiate: a:=Xy:fofType
% Found x0 as proof of (P0 a)
% Found x0:(P Xy)
% Instantiate: a:=Xy:fofType
% Found x0 as proof of (P0 a)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:(P b)
% Found x0 as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found x0:(P1 Xy)
% Instantiate: b:=Xy:fofType
% Found x0 as proof of (P2 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found x0:(P1 Xy)
% Instantiate: b:=Xy:fofType
% Found x0 as proof of (P2 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:(P Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x0:(P b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found x0:(P b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found x0:(P Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b0))):((P b0)->(P b0))
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b0))):((P b0)->(P b0))
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (P Xx)
% Found ((eq_ref fofType) Xx) as proof of (P Xx)
% Found ((eq_ref fofType) Xx) as proof of (P Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (P Xx)
% Found ((eq_ref fofType) Xx) as proof of (P Xx)
% Found ((eq_ref fofType) Xx) as proof of (P Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found x0:(P b)
% Found x0 as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found x0:(P b)
% Found x0 as proof of (P0 Xy)
% Found x0:(P b)
% Found x0 as proof of (P0 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P0 Xy))):((P0 Xy)->(P0 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P0 Xy))) as proof of (P1 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P0 Xy))) as proof of (P1 Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b0))):((P b0)->(P b0))
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (P Xy)
% Found ((eq_ref fofType) Xy) as proof of (P Xy)
% Found ((eq_ref fofType) Xy) as proof of (P Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (P Xy)
% Found ((eq_ref fofType) Xy) as proof of (P Xy)
% Found ((eq_ref fofType) Xy) as proof of (P Xy)
% Found x0:(P Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:(P Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found x0:(P Xx)
% Instantiate: b0:=Xx:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:(P Xx)
% Instantiate: b0:=Xx:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:(P b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:(P Xy)
% Found x0 as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (P b0)
% Found ((eq_ref fofType) Xx) as proof of (P b0)
% Found ((eq_ref fofType) Xx) as proof of (P b0)
% Found ((eq_ref fofType) Xx) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (P b0)
% Found ((eq_ref fofType) Xx) as proof of (P b0)
% Found ((eq_ref fofType) Xx) as proof of (P b0)
% Found ((eq_ref fofType) Xx) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b0))):((P b0)->(P b0))
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found eq_ref00:=(eq_ref0 b00):(((eq fofType) b00) b00)
% Found (eq_ref0 b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b0))):((P b0)->(P b0))
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found eq_ref00:=(eq_ref0 b00):(((eq fofType) b00) b00)
% Found (eq_ref0 b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x1:(P1 Xy)
% Instantiate: b0:=Xy:fofType
% Found x1 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xx))):((P Xx)->(P Xx))
% Found (x (fun (x0:(fofType->Prop))=> (P Xx))) as proof of (P0 Xx)
% Found (x (fun (x0:(fofType->Prop))=> (P Xx))) as proof of (P0 Xx)
% Found eq_ref000:=(eq_ref00 P):((P Xx)->(P Xx))
% Found (eq_ref00 P) as proof of (P0 Xx)
% Found ((eq_ref0 Xx) P) as proof of (P0 Xx)
% Found (((eq_ref fofType) Xx) P) as proof of (P0 Xx)
% Found (((eq_ref fofType) Xx) P) as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found x0:(P b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found ((eq_ref fofType) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (P b0)
% Found ((eq_ref fofType) b) as proof of (P b0)
% Found ((eq_ref fofType) b) as proof of (P b0)
% Found ((eq_ref fofType) b) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P0 b0)
% Found ((eq_ref fofType) b0) as proof of (P0 b0)
% Found ((eq_ref fofType) b0) as proof of (P0 b0)
% Found ((eq_ref fofType) b0) as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:(P0 Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P Xy))):((P Xy)->(P Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P Xy))) as proof of (P0 Xy)
% Found x0:(P1 b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 a))):((P1 a)->(P1 a))
% Found (x (fun (x1:(fofType->Prop))=> (P1 a))) as proof of (P2 a)
% Found (x (fun (x1:(fofType->Prop))=> (P1 a))) as proof of (P2 a)
% Found x0:(P1 b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (P Xy)
% Found ((eq_ref fofType) Xy) as proof of (P Xy)
% Found ((eq_ref fofType) Xy) as proof of (P Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x1:(P1 b)
% Instantiate: b0:=b:fofType
% Found x1 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P2 Xy))):((P2 Xy)->(P2 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P2 Xy))) as proof of (P3 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P2 Xy))) as proof of (P3 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P2 Xy))):((P2 Xy)->(P2 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P2 Xy))) as proof of (P3 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P2 Xy))) as proof of (P3 Xy)
% Found x0:(P1 Xy)
% Instantiate: a:=Xy:fofType
% Found x0 as proof of (P2 a)
% Found x0:(P1 Xy)
% Instantiate: a:=Xy:fofType
% Found x0 as proof of (P2 a)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (P1 b0)
% Found ((eq_ref fofType) b) as proof of (P1 b0)
% Found ((eq_ref fofType) b) as proof of (P1 b0)
% Found ((eq_ref fofType) b) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b)
% Found x0:(P1 b)
% Found x0 as proof of (P2 Xx)
% Found x0:(P1 b)
% Found x0 as proof of (P2 Xx)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b00):(((eq fofType) b00) b00)
% Found (eq_ref0 b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b00)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b00)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b00)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b00)
% Found eq_ref00:=(eq_ref0 b00):(((eq fofType) b00) b00)
% Found (eq_ref0 b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b00)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b00)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b00)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b00)
% Found x0:(P b)
% Instantiate: a:=b:fofType
% Found x0 as proof of (P0 a)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b0))):((P b0)->(P b0))
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b0))):((P b0)->(P b0))
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found (x (fun (x0:(fofType->Prop))=> (P b0))) as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found eq_ref00:=(eq_ref0 b00):(((eq fofType) b00) b00)
% Found (eq_ref0 b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found x1:(P1 Xx)
% Instantiate: b0:=Xx:fofType
% Found x1 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:(P0 b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P b))):((P b)->(P b))
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found (x (fun (x0:(fofType->Prop))=> (P b))) as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x0:(P b0)
% Instantiate: b1:=b0:fofType
% Found x0 as proof of (P0 b1)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (P1 b0)
% Found ((eq_ref fofType) Xx) as proof of (P1 b0)
% Found ((eq_ref fofType) Xx) as proof of (P1 b0)
% Found ((eq_ref fofType) Xx) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b1)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P0 b0)
% Found ((eq_ref fofType) b0) as proof of (P0 b0)
% Found ((eq_ref fofType) b0) as proof of (P0 b0)
% Found ((eq_ref fofType) b0) as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (P0 b0)
% Found ((eq_ref fofType) b) as proof of (P0 b0)
% Found ((eq_ref fofType) b) as proof of (P0 b0)
% Found ((eq_ref fofType) b) as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P0 Xy))):((P0 Xy)->(P0 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P0 Xy))) as proof of (P1 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P0 Xy))) as proof of (P1 Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found x0:(P1 Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x0:(P1 Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x0:(P1 b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found x0:(P1 Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 a))):((P1 a)->(P1 a))
% Found (x (fun (x1:(fofType->Prop))=> (P1 a))) as proof of (P2 a)
% Found (x (fun (x1:(fofType->Prop))=> (P1 a))) as proof of (P2 a)
% Found x0:(P1 Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x0:(P1 Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x0:(P1 Xy)
% Instantiate: b0:=Xy:fofType
% Found x0 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found x0:(P1 b)
% Instantiate: b0:=b:fofType
% Found x0 as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found x0:(P b0)
% Found x0 as proof of (P0 Xx)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b0))):((P1 b0)->(P1 b0))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b0))) as proof of (P2 b0)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b0))) as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P1 b0))):((P1 b0)->(P1 b0))
% Found (x (fun (x0:(fofType->Prop))=> (P1 b0))) as proof of (P2 b0)
% Found (x (fun (x0:(fofType->Prop))=> (P1 b0))) as proof of (P2 b0)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 b0))):((P1 b0)->(P1 b0))
% Found (x (fun (x1:(fofType->Prop))=> (P1 b0))) as proof of (P2 b0)
% Found (x (fun (x1:(fofType->Prop))=> (P1 b0))) as proof of (P2 b0)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 Xy))):((P1 Xy)->(P1 Xy))
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xy))) as proof of (P2 Xy)
% Found eq_ref00:=(eq_ref0 b00):(((eq fofType) b00) b00)
% Found (eq_ref0 b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b00)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (P1 Xx)
% Found ((eq_ref fofType) Xx) as proof of (P1 Xx)
% Found ((eq_ref fofType) Xx) as proof of (P1 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (P1 Xx)
% Found ((eq_ref fofType) Xx) as proof of (P1 Xx)
% Found ((eq_ref fofType) Xx) as proof of (P1 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (P1 Xx)
% Found ((eq_ref fofType) Xx) as proof of (P1 Xx)
% Found ((eq_ref fofType) Xx) as proof of (P1 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (P1 Xx)
% Found ((eq_ref fofType) Xx) as proof of (P1 Xx)
% Found ((eq_ref fofType) Xx) as proof of (P1 Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 b0))):((P1 b0)->(P1 b0))
% Found (x (fun (x1:(fofType->Prop))=> (P1 b0))) as proof of (P2 b0)
% Found (x (fun (x1:(fofType->Prop))=> (P1 b0))) as proof of (P2 b0)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 Xx))):((P1 Xx)->(P1 Xx))
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xx))) as proof of (P2 Xx)
% Found (x (fun (x1:(fofType->Prop))=> (P1 Xx))) as proof of (P2 Xx)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 b))):((P1 b)->(P1 b))
% Found (x (fun (x1:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found (x (fun (x1:(fofType->Prop))=> (P1 b))) as proof of (P2 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P3 Xy))):((P3 Xy)->(P3 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P3 Xy))) as proof of (P4 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P3 Xy))) as proof of (P4 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P3 b))):((P3 b)->(P3 b))
% Found (x (fun (x0:(fofType->Prop))=> (P3 b))) as proof of (P4 b)
% Found (x (fun (x0:(fofType->Prop))=> (P3 b))) as proof of (P4 b)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P3 Xy))):((P3 Xy)->(P3 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P3 Xy))) as proof of (P4 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P3 Xy))) as proof of (P4 Xy)
% Found x0:=(x (fun (x0:(fofType->Prop))=> (P3 Xy))):((P3 Xy)->(P3 Xy))
% Found (x (fun (x0:(fofType->Prop))=> (P3 Xy))) as proof of (P4 Xy)
% Found (x (fun (x0:(fofType->Prop))=> (P3 Xy))) as proof of (P4 Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found ((eq_ref fofType) b0) as proof of (P1 b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found x1:=(x (fun (x1:(fofType->Prop))=> (P1 b0))):((P1 b0)->(P1 b0))
% Found (x (fun (x1:(fofType->Prop))=> (P1 b0))) as proof of (P2 b0)
% Found (x (fun (x1:(fofType->Prop))=> (P1 b0))) as proof of (P2 b0)
% Found x0:(P Xy)
% Instantiate: a:=Xy:fofType
% Found x0 as proof of (P0 a)
% Found x0:(P1 b)
% Found x0 as proof of (P2 Xy)
% Found x0:(P1 Xy)
% Found x0 as proof of (P2 Xy)
% Found x0:(P Xy)
% Instantiate: a:=Xy:fofType
% Found x0 as proof of (P0 a)
% Found x0:(P1 b)
% Found x0 as proof of (P2 Xy)
% Found x0:(P1 Xy)
% Found x0 as proof of (P2 Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) a)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) a)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) a)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) a)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) b0)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq fofType) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found ((eq_ref fofType) b1) as proof of (((eq fofType) b1) Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b1)
% Found eq_ref00:=(eq_ref0 b00):(((eq fofType) b00) b00)
% Found (eq_ref0 b00) as proof of (((eq fofType) b00) Xy)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) Xy)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) Xy)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b00)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b00)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b00)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b00)
% Found eq_ref00:=(eq_ref0 b00):(((eq fofType) b00) b00)
% Found (eq_ref0 b00) as proof of (((eq fofType) b00) Xy)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) Xy)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) Xy)
% Found ((eq_ref fofType) b00) as proof of (((eq fofType) b00) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b00)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b00)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b00)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b00)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofTy
% EOF
%------------------------------------------------------------------------------