TSTP Solution File: SEU932^5 by Duper---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Duper---1.0
% Problem  : SEU932^5 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : duper %s

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 16:44:20 EDT 2023

% Result   : Theorem 3.64s 3.79s
% Output   : Proof 3.64s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : SEU932^5 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.13  % Command    : duper %s
% 0.14/0.34  % Computer : n022.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit   : 300
% 0.14/0.34  % WCLimit    : 300
% 0.14/0.34  % DateTime   : Wed Aug 23 18:46:11 EDT 2023
% 0.14/0.34  % CPUTime    : 
% 3.64/3.79  SZS status Theorem for theBenchmark.p
% 3.64/3.79  SZS output start Proof for theBenchmark.p
% 3.64/3.79  Clause #0 (by assumption #[]): Eq
% 3.64/3.79    (Not
% 3.64/3.79      (∀ (Xf : Iota → Iota),
% 3.64/3.79        (Exists fun Xg =>
% 3.64/3.79            And (Eq (fun Xx => Xf (Xg Xx)) fun Xx => Xg (Xf Xx))
% 3.64/3.79              (Exists fun Xx => And (Eq (Xg Xx) Xx) (∀ (Xz : Iota), Eq (Xg Xz) Xz → Eq Xz Xx))) →
% 3.64/3.79          Exists fun Xy => Eq (Xf Xy) Xy))
% 3.64/3.79    True
% 3.64/3.79  Clause #1 (by clausification #[0]): Eq
% 3.64/3.79    (∀ (Xf : Iota → Iota),
% 3.64/3.79      (Exists fun Xg =>
% 3.64/3.79          And (Eq (fun Xx => Xf (Xg Xx)) fun Xx => Xg (Xf Xx))
% 3.64/3.79            (Exists fun Xx => And (Eq (Xg Xx) Xx) (∀ (Xz : Iota), Eq (Xg Xz) Xz → Eq Xz Xx))) →
% 3.64/3.79        Exists fun Xy => Eq (Xf Xy) Xy)
% 3.64/3.79    False
% 3.64/3.79  Clause #2 (by clausification #[1]): ∀ (a : Iota → Iota),
% 3.64/3.79    Eq
% 3.64/3.79      (Not
% 3.64/3.79        ((Exists fun Xg =>
% 3.64/3.79            And (Eq (fun Xx => skS.0 0 a (Xg Xx)) fun Xx => Xg (skS.0 0 a Xx))
% 3.64/3.79              (Exists fun Xx => And (Eq (Xg Xx) Xx) (∀ (Xz : Iota), Eq (Xg Xz) Xz → Eq Xz Xx))) →
% 3.64/3.79          Exists fun Xy => Eq (skS.0 0 a Xy) Xy))
% 3.64/3.79      True
% 3.64/3.79  Clause #3 (by clausification #[2]): ∀ (a : Iota → Iota),
% 3.64/3.79    Eq
% 3.64/3.79      ((Exists fun Xg =>
% 3.64/3.79          And (Eq (fun Xx => skS.0 0 a (Xg Xx)) fun Xx => Xg (skS.0 0 a Xx))
% 3.64/3.79            (Exists fun Xx => And (Eq (Xg Xx) Xx) (∀ (Xz : Iota), Eq (Xg Xz) Xz → Eq Xz Xx))) →
% 3.64/3.79        Exists fun Xy => Eq (skS.0 0 a Xy) Xy)
% 3.64/3.79      False
% 3.64/3.79  Clause #4 (by clausification #[3]): ∀ (a : Iota → Iota),
% 3.64/3.79    Eq
% 3.64/3.79      (Exists fun Xg =>
% 3.64/3.79        And (Eq (fun Xx => skS.0 0 a (Xg Xx)) fun Xx => Xg (skS.0 0 a Xx))
% 3.64/3.79          (Exists fun Xx => And (Eq (Xg Xx) Xx) (∀ (Xz : Iota), Eq (Xg Xz) Xz → Eq Xz Xx)))
% 3.64/3.79      True
% 3.64/3.79  Clause #5 (by clausification #[3]): ∀ (a : Iota → Iota), Eq (Exists fun Xy => Eq (skS.0 0 a Xy) Xy) False
% 3.64/3.79  Clause #6 (by clausification #[4]): ∀ (a a_1 : Iota → Iota),
% 3.64/3.79    Eq
% 3.64/3.79      (And (Eq (fun Xx => skS.0 0 a (skS.0 1 a a_1 Xx)) fun Xx => skS.0 1 a a_1 (skS.0 0 a Xx))
% 3.64/3.79        (Exists fun Xx => And (Eq (skS.0 1 a a_1 Xx) Xx) (∀ (Xz : Iota), Eq (skS.0 1 a a_1 Xz) Xz → Eq Xz Xx)))
% 3.64/3.79      True
% 3.64/3.79  Clause #7 (by clausification #[6]): ∀ (a a_1 : Iota → Iota),
% 3.64/3.79    Eq (Exists fun Xx => And (Eq (skS.0 1 a a_1 Xx) Xx) (∀ (Xz : Iota), Eq (skS.0 1 a a_1 Xz) Xz → Eq Xz Xx)) True
% 3.64/3.79  Clause #8 (by clausification #[6]): ∀ (a a_1 : Iota → Iota), Eq (Eq (fun Xx => skS.0 0 a (skS.0 1 a a_1 Xx)) fun Xx => skS.0 1 a a_1 (skS.0 0 a Xx)) True
% 3.64/3.79  Clause #9 (by clausification #[7]): ∀ (a a_1 : Iota → Iota) (a_2 : Iota),
% 3.64/3.79    Eq
% 3.64/3.79      (And (Eq (skS.0 1 a a_1 (skS.0 2 a a_1 a_2)) (skS.0 2 a a_1 a_2))
% 3.64/3.79        (∀ (Xz : Iota), Eq (skS.0 1 a a_1 Xz) Xz → Eq Xz (skS.0 2 a a_1 a_2)))
% 3.64/3.79      True
% 3.64/3.79  Clause #10 (by clausification #[9]): ∀ (a a_1 : Iota → Iota) (a_2 : Iota), Eq (∀ (Xz : Iota), Eq (skS.0 1 a a_1 Xz) Xz → Eq Xz (skS.0 2 a a_1 a_2)) True
% 3.64/3.79  Clause #11 (by clausification #[9]): ∀ (a a_1 : Iota → Iota) (a_2 : Iota), Eq (Eq (skS.0 1 a a_1 (skS.0 2 a a_1 a_2)) (skS.0 2 a a_1 a_2)) True
% 3.64/3.79  Clause #12 (by clausification #[10]): ∀ (a a_1 : Iota → Iota) (a_2 a_3 : Iota), Eq (Eq (skS.0 1 a a_1 a_2) a_2 → Eq a_2 (skS.0 2 a a_1 a_3)) True
% 3.64/3.79  Clause #13 (by clausification #[12]): ∀ (a a_1 : Iota → Iota) (a_2 a_3 : Iota),
% 3.64/3.79    Or (Eq (Eq (skS.0 1 a a_1 a_2) a_2) False) (Eq (Eq a_2 (skS.0 2 a a_1 a_3)) True)
% 3.64/3.79  Clause #14 (by clausification #[13]): ∀ (a : Iota) (a_1 a_2 : Iota → Iota) (a_3 : Iota), Or (Eq (Eq a (skS.0 2 a_1 a_2 a_3)) True) (Ne (skS.0 1 a_1 a_2 a) a)
% 3.64/3.79  Clause #15 (by clausification #[14]): ∀ (a a_1 : Iota → Iota) (a_2 a_3 : Iota), Or (Ne (skS.0 1 a a_1 a_2) a_2) (Eq a_2 (skS.0 2 a a_1 a_3))
% 3.64/3.79  Clause #16 (by clausification #[5]): ∀ (a : Iota → Iota) (a_1 : Iota), Eq (Eq (skS.0 0 a a_1) a_1) False
% 3.64/3.79  Clause #17 (by clausification #[16]): ∀ (a : Iota → Iota) (a_1 : Iota), Ne (skS.0 0 a a_1) a_1
% 3.64/3.79  Clause #18 (by clausification #[11]): ∀ (a a_1 : Iota → Iota) (a_2 : Iota), Eq (skS.0 1 a a_1 (skS.0 2 a a_1 a_2)) (skS.0 2 a a_1 a_2)
% 3.64/3.79  Clause #19 (by superposition #[18, 15]): ∀ (a a_1 : Iota → Iota) (a_2 a_3 : Iota),
% 3.64/3.79    Or (Ne (skS.0 2 a a_1 a_2) (skS.0 2 a a_1 a_2)) (Eq (skS.0 2 a a_1 a_2) (skS.0 2 a a_1 a_3))
% 3.64/3.79  Clause #20 (by clausification #[8]): ∀ (a a_1 : Iota → Iota), Eq (fun Xx => skS.0 0 a (skS.0 1 a a_1 Xx)) fun Xx => skS.0 1 a a_1 (skS.0 0 a Xx)
% 3.64/3.80  Clause #21 (by argument congruence #[20]): ∀ (a a_1 : Iota → Iota) (a_2 : Iota),
% 3.64/3.80    Eq ((fun Xx => skS.0 0 a (skS.0 1 a a_1 Xx)) a_2) ((fun Xx => skS.0 1 a a_1 (skS.0 0 a Xx)) a_2)
% 3.64/3.80  Clause #23 (by betaEtaReduce #[21]): ∀ (a a_1 : Iota → Iota) (a_2 : Iota), Eq (skS.0 0 a (skS.0 1 a a_1 a_2)) (skS.0 1 a a_1 (skS.0 0 a a_2))
% 3.64/3.80  Clause #24 (by superposition #[23, 15]): ∀ (a a_1 : Iota → Iota) (a_2 a_3 : Iota),
% 3.64/3.80    Or (Ne (skS.0 0 a (skS.0 1 a a_1 a_2)) (skS.0 0 a a_2)) (Eq (skS.0 0 a a_2) (skS.0 2 a a_1 a_3))
% 3.64/3.80  Clause #25 (by eliminate resolved literals #[19]): ∀ (a a_1 : Iota → Iota) (a_2 a_3 : Iota), Eq (skS.0 2 a a_1 a_2) (skS.0 2 a a_1 a_3)
% 3.64/3.80  Clause #26 (by superposition #[24, 18]): ∀ (a a_1 : Iota → Iota) (a_2 a_3 : Iota),
% 3.64/3.80    Or (Ne (skS.0 0 a (skS.0 2 a a_1 a_2)) (skS.0 0 a (skS.0 2 a a_1 a_2)))
% 3.64/3.80      (Eq (skS.0 0 a (skS.0 2 a a_1 a_2)) (skS.0 2 a a_1 a_3))
% 3.64/3.80  Clause #29 (by eliminate resolved literals #[26]): ∀ (a a_1 : Iota → Iota) (a_2 a_3 : Iota), Eq (skS.0 0 a (skS.0 2 a a_1 a_2)) (skS.0 2 a a_1 a_3)
% 3.64/3.80  Clause #30 (by superposition #[29, 17]): ∀ (a a_1 : Iota → Iota) (a_2 a_3 : Iota), Ne (skS.0 2 a a_1 a_2) (skS.0 2 a a_1 a_3)
% 3.64/3.80  Clause #36 (by forward contextual literal cutting #[30, 25]): False
% 3.64/3.80  SZS output end Proof for theBenchmark.p
%------------------------------------------------------------------------------