TSTP Solution File: SEU928^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU928^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n118.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:23 EDT 2014

% Result   : Theorem 24.39s
% Output   : Proof 24.39s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU928^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n118.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:43:06 CDT 2014
% % CPUTime  : 24.39 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (forall (F:(fofType->fofType)), ((forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F Xx)) (F Xy))->(((eq fofType) Xx) Xy)))->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F (F Xx))) (F (F Xy)))->(((eq fofType) Xx) Xy))))) of role conjecture named cTHM48A_pme
% Conjecture to prove = (forall (F:(fofType->fofType)), ((forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F Xx)) (F Xy))->(((eq fofType) Xx) Xy)))->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F (F Xx))) (F (F Xy)))->(((eq fofType) Xx) Xy))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(forall (F:(fofType->fofType)), ((forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F Xx)) (F Xy))->(((eq fofType) Xx) Xy)))->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F (F Xx))) (F (F Xy)))->(((eq fofType) Xx) Xy)))))']
% Parameter fofType:Type.
% Trying to prove (forall (F:(fofType->fofType)), ((forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F Xx)) (F Xy))->(((eq fofType) Xx) Xy)))->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F (F Xx))) (F (F Xy)))->(((eq fofType) Xx) Xy)))))
% Found x00:=(x0 (fun (x2:fofType)=> (P Xx))):((P Xx)->(P Xx))
% Found (x0 (fun (x2:fofType)=> (P Xx))) as proof of (P0 Xx)
% Found (x0 (fun (x2:fofType)=> (P Xx))) as proof of (P0 Xx)
% Found x00:=(x0 (fun (x1:fofType)=> (P Xx))):((P Xx)->(P Xx))
% Found (x0 (fun (x1:fofType)=> (P Xx))) as proof of (P0 Xx)
% Found (x0 (fun (x1:fofType)=> (P Xx))) as proof of (P0 Xx)
% Found x00:=(x0 (fun (x2:fofType)=> (P (F Xx)))):((P (F Xx))->(P (F Xx)))
% Found (x0 (fun (x2:fofType)=> (P (F Xx)))) as proof of (P0 (F Xx))
% Found (x0 (fun (x2:fofType)=> (P (F Xx)))) as proof of (P0 (F Xx))
% Found x00:=(x0 (fun (x2:fofType)=> (P Xy))):((P Xy)->(P Xy))
% Found (x0 (fun (x2:fofType)=> (P Xy))) as proof of (P0 Xy)
% Found (x0 (fun (x2:fofType)=> (P Xy))) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy)
% Found eq_ref00:=(eq_ref0 (F Xx)):(((eq fofType) (F Xx)) (F Xx))
% Found (eq_ref0 (F Xx)) as proof of (((eq fofType) (F Xx)) b)
% Found ((eq_ref fofType) (F Xx)) as proof of (((eq fofType) (F Xx)) b)
% Found ((eq_ref fofType) (F Xx)) as proof of (((eq fofType) (F Xx)) b)
% Found ((eq_ref fofType) (F Xx)) as proof of (((eq fofType) (F Xx)) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) (F Xy))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xy))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xy))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xy))
% Found x00:=(x0 (fun (x2:fofType)=> (P (F Xy)))):((P (F Xy))->(P (F Xy)))
% Found (x0 (fun (x2:fofType)=> (P (F Xy)))) as proof of (P0 (F Xy))
% Found (x0 (fun (x2:fofType)=> (P (F Xy)))) as proof of (P0 (F Xy))
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found x00:=(x0 (fun (x2:fofType)=> (P (F Xy)))):((P (F Xy))->(P (F Xy)))
% Found (x0 (fun (x2:fofType)=> (P (F Xy)))) as proof of (P0 (F Xy))
% Found (x0 (fun (x2:fofType)=> (P (F Xy)))) as proof of (P0 (F Xy))
% Found x00:=(x0 (fun (x2:fofType)=> (P (F Xy)))):((P (F Xy))->(P (F Xy)))
% Found (x0 (fun (x2:fofType)=> (P (F Xy)))) as proof of (P0 (F Xy))
% Found (x0 (fun (x2:fofType)=> (P (F Xy)))) as proof of (P0 (F Xy))
% Found x00:=(x0 (fun (x2:fofType)=> (P (F Xy)))):((P (F Xy))->(P (F Xy)))
% Found (x0 (fun (x2:fofType)=> (P (F Xy)))) as proof of (P0 Xy)
% Found (x0 (fun (x2:fofType)=> (P (F Xy)))) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 (F Xy)):(((eq fofType) (F Xy)) (F Xy))
% Found (eq_ref0 (F Xy)) as proof of (((eq fofType) (F Xy)) b)
% Found ((eq_ref fofType) (F Xy)) as proof of (((eq fofType) (F Xy)) b)
% Found ((eq_ref fofType) (F Xy)) as proof of (((eq fofType) (F Xy)) b)
% Found ((eq_ref fofType) (F Xy)) as proof of (((eq fofType) (F Xy)) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) (F Xx))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xx))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xx))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xx))
% Found eq_ref00:=(eq_ref0 (F Xy)):(((eq fofType) (F Xy)) (F Xy))
% Found (eq_ref0 (F Xy)) as proof of (((eq fofType) (F Xy)) b)
% Found ((eq_ref fofType) (F Xy)) as proof of (((eq fofType) (F Xy)) b)
% Found ((eq_ref fofType) (F Xy)) as proof of (((eq fofType) (F Xy)) b)
% Found ((eq_ref fofType) (F Xy)) as proof of (((eq fofType) (F Xy)) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) (F Xx))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xx))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xx))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xx))
% Found eq_ref00:=(eq_ref0 (F Xy)):(((eq fofType) (F Xy)) (F Xy))
% Found (eq_ref0 (F Xy)) as proof of (P Xy)
% Found ((eq_ref fofType) (F Xy)) as proof of (P Xy)
% Found ((eq_ref fofType) (F Xy)) as proof of (P Xy)
% Found x1:(P Xx)
% Instantiate: Xx0:=Xx:fofType
% Found x1 as proof of (P0 Xx0)
% Found eq_ref00:=(eq_ref0 (F Xx0)):(((eq fofType) (F Xx0)) (F Xx0))
% Found (eq_ref0 (F Xx0)) as proof of (((eq fofType) (F Xx0)) (F Xy))
% Found ((eq_ref fofType) (F Xx0)) as proof of (((eq fofType) (F Xx0)) (F Xy))
% Found ((eq_ref fofType) (F Xx0)) as proof of (((eq fofType) (F Xx0)) (F Xy))
% Found ((eq_ref fofType) (F Xx0)) as proof of (((eq fofType) (F Xx0)) (F Xy))
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) (F Xy))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xy))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xy))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) (F Xy))
% Found eq_ref00:=(eq_ref0 (F Xx)):(((eq fofType) (F Xx)) (F Xx))
% Found (eq_ref0 (F Xx)) as proof of (((eq fofType) (F Xx)) b)
% Found ((eq_ref fofType) (F Xx)) as proof of (((eq fofType) (F Xx)) b)
% Found ((eq_ref fofType) (F Xx)) as proof of (((eq fofType) (F Xx)) b)
% Found ((eq_ref fofType) (F Xx)) as proof of (((eq fofType) (F Xx)) b)
% Found x1:(P Xx)
% Instantiate: b:=Xx:fofType
% Found x1 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq fofType) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found ((eq_ref fofType) Xy) as proof of (((eq fofType) Xy) b)
% Found x300:=(x30 x0):(((eq fofType) (F Xx0)) (F Xy))
% Found (x30 x0) as proof of (((eq fofType) (F Xx0)) (F Xy))
% Found ((x3 (F Xy)) x0) as proof of (((eq fofType) (F Xx0)) (F Xy))
% Found (((x (F Xx0)) (F Xy)) x0) as proof of (((eq fofType) (F Xx0)) (F Xy))
% Found (((x (F Xx0)) (F Xy)) x0) as proof of (((eq fofType) (F Xx0)) (F Xy))
% Found ((x200 (((x (F Xx0)) (F Xy)) x0)) x1) as proof of (P Xy)
% Found ((x200 (((x (F Xx0)) (F Xy)) x0)) x1) as proof of (P Xy)
% Found (((fun (x3:(((eq fofType) (F Xx0)) (F Xy)))=> ((x20 x3) P)) (((x (F Xx0)) (F Xy)) x0)) x1) as proof of (P Xy)
% Found (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> (((x2 Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1) as proof of (P Xy)
% Found (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> ((((fun (Xx0:fofType)=> ((x Xx0) Xy)) Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1) as proof of (P Xy)
% Found (fun (x1:(P Xx))=> (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> ((((fun (Xx0:fofType)=> ((x Xx0) Xy)) Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1)) as proof of (P Xy)
% Found (fun (P:(fofType->Prop)) (x1:(P Xx))=> (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> ((((fun (Xx0:fofType)=> ((x Xx0) Xy)) Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1)) as proof of ((P Xx)->(P Xy))
% Found (fun (x0:(((eq fofType) (F (F Xx))) (F (F Xy)))) (P:(fofType->Prop)) (x1:(P Xx))=> (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> ((((fun (Xx0:fofType)=> ((x Xx0) Xy)) Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1)) as proof of (((eq fofType) Xx) Xy)
% Found (fun (Xy:fofType) (x0:(((eq fofType) (F (F Xx))) (F (F Xy)))) (P:(fofType->Prop)) (x1:(P Xx))=> (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> ((((fun (Xx0:fofType)=> ((x Xx0) Xy)) Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1)) as proof of ((((eq fofType) (F (F Xx))) (F (F Xy)))->(((eq fofType) Xx) Xy))
% Found (fun (Xx:fofType) (Xy:fofType) (x0:(((eq fofType) (F (F Xx))) (F (F Xy)))) (P:(fofType->Prop)) (x1:(P Xx))=> (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> ((((fun (Xx0:fofType)=> ((x Xx0) Xy)) Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1)) as proof of (forall (Xy:fofType), ((((eq fofType) (F (F Xx))) (F (F Xy)))->(((eq fofType) Xx) Xy)))
% Found (fun (x:(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F Xx)) (F Xy))->(((eq fofType) Xx) Xy)))) (Xx:fofType) (Xy:fofType) (x0:(((eq fofType) (F (F Xx))) (F (F Xy)))) (P:(fofType->Prop)) (x1:(P Xx))=> (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> ((((fun (Xx0:fofType)=> ((x Xx0) Xy)) Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1)) as proof of (forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F (F Xx))) (F (F Xy)))->(((eq fofType) Xx) Xy)))
% Found (fun (F:(fofType->fofType)) (x:(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F Xx)) (F Xy))->(((eq fofType) Xx) Xy)))) (Xx:fofType) (Xy:fofType) (x0:(((eq fofType) (F (F Xx))) (F (F Xy)))) (P:(fofType->Prop)) (x1:(P Xx))=> (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> ((((fun (Xx0:fofType)=> ((x Xx0) Xy)) Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1)) as proof of ((forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F Xx)) (F Xy))->(((eq fofType) Xx) Xy)))->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F (F Xx))) (F (F Xy)))->(((eq fofType) Xx) Xy))))
% Found (fun (F:(fofType->fofType)) (x:(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F Xx)) (F Xy))->(((eq fofType) Xx) Xy)))) (Xx:fofType) (Xy:fofType) (x0:(((eq fofType) (F (F Xx))) (F (F Xy)))) (P:(fofType->Prop)) (x1:(P Xx))=> (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> ((((fun (Xx0:fofType)=> ((x Xx0) Xy)) Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1)) as proof of (forall (F:(fofType->fofType)), ((forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F Xx)) (F Xy))->(((eq fofType) Xx) Xy)))->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F (F Xx))) (F (F Xy)))->(((eq fofType) Xx) Xy)))))
% Got proof (fun (F:(fofType->fofType)) (x:(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F Xx)) (F Xy))->(((eq fofType) Xx) Xy)))) (Xx:fofType) (Xy:fofType) (x0:(((eq fofType) (F (F Xx))) (F (F Xy)))) (P:(fofType->Prop)) (x1:(P Xx))=> (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> ((((fun (Xx0:fofType)=> ((x Xx0) Xy)) Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1))
% Time elapsed = 23.869563s
% node=4557 cost=1022.000000 depth=16
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (F:(fofType->fofType)) (x:(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) (F Xx)) (F Xy))->(((eq fofType) Xx) Xy)))) (Xx:fofType) (Xy:fofType) (x0:(((eq fofType) (F (F Xx))) (F (F Xy)))) (P:(fofType->Prop)) (x1:(P Xx))=> (((fun (x3:(((eq fofType) (F Xx)) (F Xy)))=> ((((fun (Xx0:fofType)=> ((x Xx0) Xy)) Xx) x3) P)) (((x (F Xx)) (F Xy)) x0)) x1))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------