TSTP Solution File: SEU814^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU814^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n097.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:12 EDT 2014

% Result   : Theorem 0.44s
% Output   : Proof 0.44s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU814^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n097.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:32:46 CDT 2014
% % CPUTime  : 0.44 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1ac37e8>, <kernel.DependentProduct object at 0x1ac33b0>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1aa4320>, <kernel.DependentProduct object at 0x1ac33b0>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1ac3320>, <kernel.Sort object at 0x1b74908>) of role type named subsetE_type
% Using role type
% Declaring subsetE:Prop
% FOF formula (((eq Prop) subsetE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B))))) of role definition named subsetE
% A new definition: (((eq Prop) subsetE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B)))))
% Defined: subsetE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B))))
% FOF formula (<kernel.Constant object at 0x1ac3758>, <kernel.DependentProduct object at 0x1ac3170>) of role type named transitiveset_type
% Using role type
% Declaring transitiveset:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) transitiveset) (fun (A:fofType)=> (forall (X:fofType), (((in X) A)->((subset X) A))))) of role definition named transitiveset
% A new definition: (((eq (fofType->Prop)) transitiveset) (fun (A:fofType)=> (forall (X:fofType), (((in X) A)->((subset X) A)))))
% Defined: transitiveset:=(fun (A:fofType)=> (forall (X:fofType), (((in X) A)->((subset X) A))))
% FOF formula (<kernel.Constant object at 0x1d12518>, <kernel.Sort object at 0x1b74908>) of role type named transitivesetOp1_type
% Using role type
% Declaring transitivesetOp1:Prop
% FOF formula (((eq Prop) transitivesetOp1) (forall (X:fofType), ((transitiveset X)->(forall (A:fofType), (((in A) X)->((subset A) X)))))) of role definition named transitivesetOp1
% A new definition: (((eq Prop) transitivesetOp1) (forall (X:fofType), ((transitiveset X)->(forall (A:fofType), (((in A) X)->((subset A) X))))))
% Defined: transitivesetOp1:=(forall (X:fofType), ((transitiveset X)->(forall (A:fofType), (((in A) X)->((subset A) X)))))
% FOF formula (subsetE->(transitivesetOp1->(forall (X:fofType), ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X)))))))) of role conjecture named transitivesetOp2
% Conjecture to prove = (subsetE->(transitivesetOp1->(forall (X:fofType), ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X)))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(subsetE->(transitivesetOp1->(forall (X:fofType), ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter subset:(fofType->(fofType->Prop)).
% Definition subsetE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B)))):Prop.
% Definition transitiveset:=(fun (A:fofType)=> (forall (X:fofType), (((in X) A)->((subset X) A)))):(fofType->Prop).
% Definition transitivesetOp1:=(forall (X:fofType), ((transitiveset X)->(forall (A:fofType), (((in A) X)->((subset A) X))))):Prop.
% Trying to prove (subsetE->(transitivesetOp1->(forall (X:fofType), ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X))))))))
% Found x100:=(x10 x2):((subset A) X)
% Found (x10 x2) as proof of ((subset A) X)
% Found ((x1 A) x2) as proof of ((subset A) X)
% Found ((x1 A) x2) as proof of ((subset A) X)
% Found (x300 ((x1 A) x2)) as proof of (((in Xx) A)->((in Xx) X))
% Found ((x30 Xx) ((x1 A) x2)) as proof of (((in Xx) A)->((in Xx) X))
% Found (((x3 X) Xx) ((x1 A) x2)) as proof of (((in Xx) A)->((in Xx) X))
% Found ((((x A) X) Xx) ((x1 A) x2)) as proof of (((in Xx) A)->((in Xx) X))
% Found (fun (x2:((in A) X))=> ((((x A) X) Xx) ((x1 A) x2))) as proof of (((in Xx) A)->((in Xx) X))
% Found (fun (Xx:fofType) (x2:((in A) X))=> ((((x A) X) Xx) ((x1 A) x2))) as proof of (((in A) X)->(((in Xx) A)->((in Xx) X)))
% Found (fun (A:fofType) (Xx:fofType) (x2:((in A) X))=> ((((x A) X) Xx) ((x1 A) x2))) as proof of (forall (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X))))
% Found (fun (x1:(transitiveset X)) (A:fofType) (Xx:fofType) (x2:((in A) X))=> ((((x A) X) Xx) ((x1 A) x2))) as proof of (forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X))))
% Found (fun (X:fofType) (x1:(transitiveset X)) (A:fofType) (Xx:fofType) (x2:((in A) X))=> ((((x A) X) Xx) ((x1 A) x2))) as proof of ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X)))))
% Found (fun (x0:transitivesetOp1) (X:fofType) (x1:(transitiveset X)) (A:fofType) (Xx:fofType) (x2:((in A) X))=> ((((x A) X) Xx) ((x1 A) x2))) as proof of (forall (X:fofType), ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X))))))
% Found (fun (x:subsetE) (x0:transitivesetOp1) (X:fofType) (x1:(transitiveset X)) (A:fofType) (Xx:fofType) (x2:((in A) X))=> ((((x A) X) Xx) ((x1 A) x2))) as proof of (transitivesetOp1->(forall (X:fofType), ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X)))))))
% Found (fun (x:subsetE) (x0:transitivesetOp1) (X:fofType) (x1:(transitiveset X)) (A:fofType) (Xx:fofType) (x2:((in A) X))=> ((((x A) X) Xx) ((x1 A) x2))) as proof of (subsetE->(transitivesetOp1->(forall (X:fofType), ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X))))))))
% Got proof (fun (x:subsetE) (x0:transitivesetOp1) (X:fofType) (x1:(transitiveset X)) (A:fofType) (Xx:fofType) (x2:((in A) X))=> ((((x A) X) Xx) ((x1 A) x2)))
% Time elapsed = 0.118815s
% node=18 cost=186.000000 depth=14
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:subsetE) (x0:transitivesetOp1) (X:fofType) (x1:(transitiveset X)) (A:fofType) (Xx:fofType) (x2:((in A) X))=> ((((x A) X) Xx) ((x1 A) x2)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------