TSTP Solution File: SEU783^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU783^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n097.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:06 EDT 2014

% Result   : Theorem 0.43s
% Output   : Proof 0.43s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU783^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n097.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:27:36 CDT 2014
% % CPUTime  : 0.43 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1c18440>, <kernel.DependentProduct object at 0x1c18bd8>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1c19440>, <kernel.DependentProduct object at 0x1c18bd8>) of role type named binunion_type
% Using role type
% Declaring binunion:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x1c18560>, <kernel.Sort object at 0x1702e60>) of role type named binunionIL_type
% Using role type
% Declaring binunionIL:Prop
% FOF formula (((eq Prop) binunionIL) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in Xx) ((binunion A) B))))) of role definition named binunionIL
% A new definition: (((eq Prop) binunionIL) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in Xx) ((binunion A) B)))))
% Defined: binunionIL:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in Xx) ((binunion A) B))))
% FOF formula (<kernel.Constant object at 0x1c18ef0>, <kernel.DependentProduct object at 0x1c18098>) of role type named kpair_type
% Using role type
% Declaring kpair:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x1c180e0>, <kernel.DependentProduct object at 0x1c18440>) of role type named breln1_type
% Using role type
% Declaring breln1:(fofType->(fofType->Prop))
% FOF formula (binunionIL->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))))))))))) of role conjecture named breln1unionIL
% Conjecture to prove = (binunionIL->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))))))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(binunionIL->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S))))))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter binunion:(fofType->(fofType->fofType)).
% Definition binunionIL:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in Xx) ((binunion A) B)))):Prop.
% Parameter kpair:(fofType->(fofType->fofType)).
% Parameter breln1:(fofType->(fofType->Prop)).
% Trying to prove (binunionIL->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S))))))))))))
% Found x400:=(x40 ((kpair Xx) Xy)):(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))
% Found (x40 ((kpair Xx) Xy)) as proof of (((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))
% Found ((x4 S) ((kpair Xx) Xy)) as proof of (((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))
% Found (((x R) S) ((kpair Xx) Xy)) as proof of (((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))
% Found (fun (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy))) as proof of (((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))
% Found (fun (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy))) as proof of (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S))))
% Found (fun (x2:((in Xx) A)) (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy))) as proof of (forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))))
% Found (fun (Xx:fofType) (x2:((in Xx) A)) (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy))) as proof of (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S))))))
% Found (fun (x1:((breln1 A) S)) (Xx:fofType) (x2:((in Xx) A)) (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy))) as proof of (forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))))))
% Found (fun (S:fofType) (x1:((breln1 A) S)) (Xx:fofType) (x2:((in Xx) A)) (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy))) as proof of (((breln1 A) S)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S))))))))
% Found (fun (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S)) (Xx:fofType) (x2:((in Xx) A)) (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy))) as proof of (forall (S:fofType), (((breln1 A) S)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))))))))
% Found (fun (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S)) (Xx:fofType) (x2:((in Xx) A)) (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy))) as proof of (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S))))))))))
% Found (fun (A:fofType) (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S)) (Xx:fofType) (x2:((in Xx) A)) (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy))) as proof of (forall (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))))))))))
% Found (fun (x:binunionIL) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S)) (Xx:fofType) (x2:((in Xx) A)) (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy))) as proof of (forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S)))))))))))
% Found (fun (x:binunionIL) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S)) (Xx:fofType) (x2:((in Xx) A)) (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy))) as proof of (binunionIL->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xx) Xy)) ((binunion R) S))))))))))))
% Got proof (fun (x:binunionIL) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S)) (Xx:fofType) (x2:((in Xx) A)) (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy)))
% Time elapsed = 0.110861s
% node=14 cost=-195.000000 depth=13
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:binunionIL) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S)) (Xx:fofType) (x2:((in Xx) A)) (Xy:fofType) (x3:((in Xy) A))=> (((x R) S) ((kpair Xx) Xy)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------