TSTP Solution File: SEU776^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU776^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n104.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:05 EDT 2014

% Result   : Theorem 0.72s
% Output   : Proof 0.72s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU776^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n104.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:26:51 CDT 2014
% % CPUTime  : 0.72 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x206fa28>, <kernel.DependentProduct object at 0x206fcb0>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x227d950>, <kernel.DependentProduct object at 0x206fcb0>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x206f878>, <kernel.DependentProduct object at 0x206fc68>) of role type named kpair_type
% Using role type
% Declaring kpair:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x206f638>, <kernel.DependentProduct object at 0x206fb90>) of role type named cartprod_type
% Using role type
% Declaring cartprod:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x206f8c0>, <kernel.DependentProduct object at 0x206f878>) of role type named breln_type
% Using role type
% Declaring breln:(fofType->(fofType->(fofType->Prop)))
% FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) breln) (fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B)))) of role definition named breln
% A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) breln) (fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B))))
% Defined: breln:=(fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B)))
% FOF formula (<kernel.Constant object at 0x24c2c20>, <kernel.DependentProduct object at 0x206f8c0>) of role type named dpsetconstr_type
% Using role type
% Declaring dpsetconstr:(fofType->(fofType->((fofType->(fofType->Prop))->fofType)))
% FOF formula (<kernel.Constant object at 0x24c2c20>, <kernel.Sort object at 0x1f4f908>) of role type named dpsetconstrI_type
% Using role type
% Declaring dpsetconstrI:Prop
% FOF formula (((eq Prop) dpsetconstrI) (forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->(((Xphi Xx) Xy)->((in ((kpair Xx) Xy)) (((dpsetconstr A) B) (fun (Xz:fofType) (Xu:fofType)=> ((Xphi Xz) Xu)))))))))) of role definition named dpsetconstrI
% A new definition: (((eq Prop) dpsetconstrI) (forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->(((Xphi Xx) Xy)->((in ((kpair Xx) Xy)) (((dpsetconstr A) B) (fun (Xz:fofType) (Xu:fofType)=> ((Xphi Xz) Xu))))))))))
% Defined: dpsetconstrI:=(forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->(((Xphi Xx) Xy)->((in ((kpair Xx) Xy)) (((dpsetconstr A) B) (fun (Xz:fofType) (Xu:fofType)=> ((Xphi Xz) Xu)))))))))
% FOF formula (<kernel.Constant object at 0x24c2368>, <kernel.DependentProduct object at 0x206fcb0>) of role type named breln1_type
% Using role type
% Declaring breln1:(fofType->(fofType->Prop))
% FOF formula (((eq (fofType->(fofType->Prop))) breln1) (fun (A:fofType) (R:fofType)=> (((breln A) A) R))) of role definition named breln1
% A new definition: (((eq (fofType->(fofType->Prop))) breln1) (fun (A:fofType) (R:fofType)=> (((breln A) A) R)))
% Defined: breln1:=(fun (A:fofType) (R:fofType)=> (((breln A) A) R))
% FOF formula (<kernel.Constant object at 0x206fcb0>, <kernel.DependentProduct object at 0x206fc68>) of role type named breln1invset_type
% Using role type
% Declaring breln1invset:(fofType->(fofType->fofType))
% FOF formula (((eq (fofType->(fofType->fofType))) breln1invset) (fun (A:fofType) (R:fofType)=> (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((in ((kpair Xy) Xx)) R))))) of role definition named breln1invset
% A new definition: (((eq (fofType->(fofType->fofType))) breln1invset) (fun (A:fofType) (R:fofType)=> (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((in ((kpair Xy) Xx)) R)))))
% Defined: breln1invset:=(fun (A:fofType) (R:fofType)=> (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((in ((kpair Xy) Xx)) R))))
% FOF formula (dpsetconstrI->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R)))))))))) of role conjecture named breln1invI
% Conjecture to prove = (dpsetconstrI->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R)))))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(dpsetconstrI->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R))))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter subset:(fofType->(fofType->Prop)).
% Parameter kpair:(fofType->(fofType->fofType)).
% Parameter cartprod:(fofType->(fofType->fofType)).
% Definition breln:=(fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B))):(fofType->(fofType->(fofType->Prop))).
% Parameter dpsetconstr:(fofType->(fofType->((fofType->(fofType->Prop))->fofType))).
% Definition dpsetconstrI:=(forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->(((Xphi Xx) Xy)->((in ((kpair Xx) Xy)) (((dpsetconstr A) B) (fun (Xz:fofType) (Xu:fofType)=> ((Xphi Xz) Xu))))))))):Prop.
% Definition breln1:=(fun (A:fofType) (R:fofType)=> (((breln A) A) R)):(fofType->(fofType->Prop)).
% Definition breln1invset:=(fun (A:fofType) (R:fofType)=> (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((in ((kpair Xy) Xx)) R)))):(fofType->(fofType->fofType)).
% Trying to prove (dpsetconstrI->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R))))))))))
% Found x40000000:=(x4000000 x3):((in ((kpair Xy) Xx)) (((dpsetconstr A) A) (fun (Xz:fofType) (Xu:fofType)=> ((in ((kpair Xu) Xz)) R))))
% Found (x4000000 x3) as proof of ((in ((kpair Xy) Xx)) ((breln1invset A) R))
% Found ((x400000 x1) x3) as proof of ((in ((kpair Xy) Xx)) ((breln1invset A) R))
% Found (((x40000 Xx) x1) x3) as proof of ((in ((kpair Xy) Xx)) ((breln1invset A) R))
% Found ((((x4000 x2) Xx) x1) x3) as proof of ((in ((kpair Xy) Xx)) ((breln1invset A) R))
% Found (((((x400 Xy) x2) Xx) x1) x3) as proof of ((in ((kpair Xy) Xx)) ((breln1invset A) R))
% Found ((((((x40 (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3) as proof of ((in ((kpair Xy) Xx)) ((breln1invset A) R))
% Found (((((((x4 A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3) as proof of ((in ((kpair Xy) Xx)) ((breln1invset A) R))
% Found ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3) as proof of ((in ((kpair Xy) Xx)) ((breln1invset A) R))
% Found (fun (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3)) as proof of ((in ((kpair Xy) Xx)) ((breln1invset A) R))
% Found (fun (x2:((in Xy) A)) (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3)) as proof of (((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R)))
% Found (fun (Xy:fofType) (x2:((in Xy) A)) (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3)) as proof of (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R))))
% Found (fun (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) A)) (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3)) as proof of (forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R)))))
% Found (fun (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) A)) (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3)) as proof of (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R))))))
% Found (fun (x0:((breln1 A) R)) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) A)) (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3)) as proof of (forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R)))))))
% Found (fun (R:fofType) (x0:((breln1 A) R)) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) A)) (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3)) as proof of (((breln1 A) R)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R))))))))
% Found (fun (A:fofType) (R:fofType) (x0:((breln1 A) R)) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) A)) (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3)) as proof of (forall (R:fofType), (((breln1 A) R)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R)))))))))
% Found (fun (x:dpsetconstrI) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) A)) (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3)) as proof of (forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R)))))))))
% Found (fun (x:dpsetconstrI) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) A)) (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3)) as proof of (dpsetconstrI->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->((in ((kpair Xy) Xx)) ((breln1invset A) R))))))))))
% Got proof (fun (x:dpsetconstrI) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) A)) (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3))
% Time elapsed = 0.384676s
% node=35 cost=276.000000 depth=17
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:dpsetconstrI) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) A)) (x3:((in ((kpair Xx) Xy)) R))=> ((((((((x A) A) (fun (x11:fofType) (x100:fofType)=> ((in ((kpair x100) x11)) R))) Xy) x2) Xx) x1) x3))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------