TSTP Solution File: SEU768^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU768^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n187.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:03 EDT 2014

% Result   : Theorem 0.46s
% Output   : Proof 0.46s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU768^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n187.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:25:51 CDT 2014
% % CPUTime  : 0.46 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x20b0e60>, <kernel.DependentProduct object at 0x20b0a70>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x2101560>, <kernel.DependentProduct object at 0x20b0a70>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20b0f80>, <kernel.DependentProduct object at 0x20b0878>) of role type named kpair_type
% Using role type
% Declaring kpair:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x20b07e8>, <kernel.DependentProduct object at 0x20b0e60>) of role type named cartprod_type
% Using role type
% Declaring cartprod:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x20b0a70>, <kernel.DependentProduct object at 0x20b0e60>) of role type named breln_type
% Using role type
% Declaring breln:(fofType->(fofType->(fofType->Prop)))
% FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) breln) (fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B)))) of role definition named breln
% A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) breln) (fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B))))
% Defined: breln:=(fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B)))
% FOF formula (<kernel.Constant object at 0x20b07e8>, <kernel.Sort object at 0x1f0aef0>) of role type named brelnall2_type
% Using role type
% Declaring brelnall2:Prop
% FOF formula (((eq Prop) brelnall2) (forall (A:fofType) (B:fofType) (R:fofType), ((((breln A) B) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx)))))))) of role definition named brelnall2
% A new definition: (((eq Prop) brelnall2) (forall (A:fofType) (B:fofType) (R:fofType), ((((breln A) B) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx))))))))
% Defined: brelnall2:=(forall (A:fofType) (B:fofType) (R:fofType), ((((breln A) B) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx)))))))
% FOF formula (<kernel.Constant object at 0x211fe60>, <kernel.DependentProduct object at 0x211f758>) of role type named breln1_type
% Using role type
% Declaring breln1:(fofType->(fofType->Prop))
% FOF formula (((eq (fofType->(fofType->Prop))) breln1) (fun (A:fofType) (R:fofType)=> (((breln A) A) R))) of role definition named breln1
% A new definition: (((eq (fofType->(fofType->Prop))) breln1) (fun (A:fofType) (R:fofType)=> (((breln A) A) R)))
% Defined: breln1:=(fun (A:fofType) (R:fofType)=> (((breln A) A) R))
% FOF formula (brelnall2->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx)))))))) of role conjecture named breln1all2
% Conjecture to prove = (brelnall2->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx)))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(brelnall2->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter subset:(fofType->(fofType->Prop)).
% Parameter kpair:(fofType->(fofType->fofType)).
% Parameter cartprod:(fofType->(fofType->fofType)).
% Definition breln:=(fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B))):(fofType->(fofType->(fofType->Prop))).
% Definition brelnall2:=(forall (A:fofType) (B:fofType) (R:fofType), ((((breln A) B) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx))))))):Prop.
% Definition breln1:=(fun (A:fofType) (R:fofType)=> (((breln A) A) R)):(fofType->(fofType->Prop)).
% Trying to prove (brelnall2->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx))))))))
% Found x00:=(x0 A):(forall (R:fofType), ((((breln A) A) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx)))))))
% Found (x0 A) as proof of (forall (R:fofType), (((breln1 A) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx)))))))
% Found ((x A) A) as proof of (forall (R:fofType), (((breln1 A) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx)))))))
% Found (fun (A:fofType)=> ((x A) A)) as proof of (forall (R:fofType), (((breln1 A) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx)))))))
% Found (fun (x:brelnall2) (A:fofType)=> ((x A) A)) as proof of (forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx)))))))
% Found (fun (x:brelnall2) (A:fofType)=> ((x A) A)) as proof of (brelnall2->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) A)->(((in ((kpair Xx) Xy)) R)->(Xphi ((kpair Xx) Xy)))))))->(forall (Xx:fofType), (((in Xx) R)->(Xphi Xx))))))))
% Got proof (fun (x:brelnall2) (A:fofType)=> ((x A) A))
% Time elapsed = 0.125338s
% node=6 cost=-184.000000 depth=4
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:brelnall2) (A:fofType)=> ((x A) A))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------