TSTP Solution File: SEU740^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU740^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n117.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:59 EDT 2014

% Result   : Theorem 0.52s
% Output   : Proof 0.52s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU740^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n117.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:20:56 CDT 2014
% % CPUTime  : 0.52 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x14d23f8>, <kernel.DependentProduct object at 0x14d2710>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x14d4368>, <kernel.DependentProduct object at 0x14d26c8>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x14d2440>, <kernel.DependentProduct object at 0x14d2dd0>) of role type named binunion_type
% Using role type
% Declaring binunion:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x14d25f0>, <kernel.Sort object at 0x1584dd0>) of role type named binunionIL_type
% Using role type
% Declaring binunionIL:Prop
% FOF formula (((eq Prop) binunionIL) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in Xx) ((binunion A) B))))) of role definition named binunionIL
% A new definition: (((eq Prop) binunionIL) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in Xx) ((binunion A) B)))))
% Defined: binunionIL:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in Xx) ((binunion A) B))))
% FOF formula (<kernel.Constant object at 0x14d2ab8>, <kernel.DependentProduct object at 0x14d2998>) of role type named binintersect_type
% Using role type
% Declaring binintersect:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x14d2b00>, <kernel.Sort object at 0x1584dd0>) of role type named binintersectEL_type
% Using role type
% Declaring binintersectEL:Prop
% FOF formula (((eq Prop) binintersectEL) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A)))) of role definition named binintersectEL
% A new definition: (((eq Prop) binintersectEL) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A))))
% Defined: binintersectEL:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A)))
% FOF formula (binunionIL->(binintersectEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z))))))))))))) of role conjecture named inIntersectImpInUnion
% Conjecture to prove = (binunionIL->(binintersectEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z))))))))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(binunionIL->(binintersectEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z)))))))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter powerset:(fofType->fofType).
% Parameter binunion:(fofType->(fofType->fofType)).
% Definition binunionIL:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in Xx) ((binunion A) B)))):Prop.
% Parameter binintersect:(fofType->(fofType->fofType)).
% Definition binintersectEL:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A))):Prop.
% Trying to prove (binunionIL->(binintersectEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z)))))))))))))
% Found x00000:=(x0000 x5):((in Xx) X)
% Found (x0000 x5) as proof of ((in Xx) X)
% Found ((x000 Y) x5) as proof of ((in Xx) X)
% Found (((fun (B:fofType)=> ((x00 B) Xx)) Y) x5) as proof of ((in Xx) X)
% Found (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5) as proof of ((in Xx) X)
% Found (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5) as proof of ((in Xx) X)
% Found (x600 (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5)) as proof of ((in Xx) ((binunion X) Z))
% Found ((x60 Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5)) as proof of ((in Xx) ((binunion X) Z))
% Found (((x6 Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5)) as proof of ((in Xx) ((binunion X) Z))
% Found ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5)) as proof of ((in Xx) ((binunion X) Z))
% Found (fun (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of ((in Xx) ((binunion X) Z))
% Found (fun (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z)))
% Found (fun (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z))))
% Found (fun (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z)))))
% Found (fun (Z:fofType) (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z))))))
% Found (fun (x2:((in Y) (powerset A))) (Z:fofType) (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z)))))))
% Found (fun (Y:fofType) (x2:((in Y) (powerset A))) (Z:fofType) (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (((in Y) (powerset A))->(forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z))))))))
% Found (fun (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Z:fofType) (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (forall (Y:fofType), (((in Y) (powerset A))->(forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z)))))))))
% Found (fun (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Z:fofType) (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z))))))))))
% Found (fun (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Z:fofType) (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (forall (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z)))))))))))
% Found (fun (x0:binintersectEL) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Z:fofType) (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z)))))))))))
% Found (fun (x:binunionIL) (x0:binintersectEL) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Z:fofType) (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (binintersectEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z))))))))))))
% Found (fun (x:binunionIL) (x0:binintersectEL) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Z:fofType) (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5))) as proof of (binunionIL->(binintersectEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Z:fofType), (((in Z) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((binintersect X) Y))->((in Xx) ((binunion X) Z)))))))))))))
% Got proof (fun (x:binunionIL) (x0:binintersectEL) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Z:fofType) (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5)))
% Time elapsed = 0.195213s
% node=26 cost=607.000000 depth=21
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:binunionIL) (x0:binintersectEL) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Z:fofType) (x3:((in Z) (powerset A))) (Xx:fofType) (x4:((in Xx) A)) (x5:((in Xx) ((binintersect X) Y)))=> ((((x X) Z) Xx) (((fun (B:fofType)=> (((x0 X) B) Xx)) Y) x5)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------