TSTP Solution File: SEU739^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU739^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n189.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:58 EDT 2014

% Result   : Theorem 0.48s
% Output   : Proof 0.48s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU739^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n189.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:20:51 CDT 2014
% % CPUTime  : 0.48 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x14b8ab8>, <kernel.DependentProduct object at 0x14b8878>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x16961b8>, <kernel.DependentProduct object at 0x14b8c20>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x14b88c0>, <kernel.DependentProduct object at 0x14b8d88>) of role type named binunion_type
% Using role type
% Declaring binunion:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x14b8710>, <kernel.Sort object at 0x139b488>) of role type named binunionIR_type
% Using role type
% Declaring binunionIR:Prop
% FOF formula (((eq Prop) binunionIR) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B))))) of role definition named binunionIR
% A new definition: (((eq Prop) binunionIR) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B)))))
% Defined: binunionIR:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B))))
% FOF formula (binunionIR->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False))))))))) of role conjecture named binunionTIRcontra
% Conjecture to prove = (binunionIR->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False))))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(binunionIR->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False)))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter powerset:(fofType->fofType).
% Parameter binunion:(fofType->(fofType->fofType)).
% Definition binunionIR:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B)))):Prop.
% Trying to prove (binunionIR->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False)))))))))
% Found x5000:=(x500 x4):((in Xx) ((binunion X) Y))
% Found (x500 x4) as proof of ((in Xx) ((binunion X) Y))
% Found ((x50 Xx) x4) as proof of ((in Xx) ((binunion X) Y))
% Found (((x5 Y) Xx) x4) as proof of ((in Xx) ((binunion X) Y))
% Found ((((x X) Y) Xx) x4) as proof of ((in Xx) ((binunion X) Y))
% Found ((((x X) Y) Xx) x4) as proof of ((in Xx) ((binunion X) Y))
% Found (x3 ((((x X) Y) Xx) x4)) as proof of False
% Found (fun (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4))) as proof of False
% Found (fun (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4))) as proof of (((in Xx) Y)->False)
% Found (fun (x2:((in Xx) A)) (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4))) as proof of ((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False))
% Found (fun (Xx:fofType) (x2:((in Xx) A)) (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4))) as proof of (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False)))
% Found (fun (x1:((in Y) (powerset A))) (Xx:fofType) (x2:((in Xx) A)) (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4))) as proof of (forall (Xx:fofType), (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False))))
% Found (fun (Y:fofType) (x1:((in Y) (powerset A))) (Xx:fofType) (x2:((in Xx) A)) (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4))) as proof of (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False)))))
% Found (fun (x0:((in X) (powerset A))) (Y:fofType) (x1:((in Y) (powerset A))) (Xx:fofType) (x2:((in Xx) A)) (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4))) as proof of (forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False))))))
% Found (fun (X:fofType) (x0:((in X) (powerset A))) (Y:fofType) (x1:((in Y) (powerset A))) (Xx:fofType) (x2:((in Xx) A)) (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4))) as proof of (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False)))))))
% Found (fun (A:fofType) (X:fofType) (x0:((in X) (powerset A))) (Y:fofType) (x1:((in Y) (powerset A))) (Xx:fofType) (x2:((in Xx) A)) (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4))) as proof of (forall (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False))))))))
% Found (fun (x:binunionIR) (A:fofType) (X:fofType) (x0:((in X) (powerset A))) (Y:fofType) (x1:((in Y) (powerset A))) (Xx:fofType) (x2:((in Xx) A)) (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4))) as proof of (forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False))))))))
% Found (fun (x:binunionIR) (A:fofType) (X:fofType) (x0:((in X) (powerset A))) (Y:fofType) (x1:((in Y) (powerset A))) (Xx:fofType) (x2:((in Xx) A)) (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4))) as proof of (binunionIR->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) ((binunion X) Y))->False)->(((in Xx) Y)->False)))))))))
% Got proof (fun (x:binunionIR) (A:fofType) (X:fofType) (x0:((in X) (powerset A))) (Y:fofType) (x1:((in Y) (powerset A))) (Xx:fofType) (x2:((in Xx) A)) (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4)))
% Time elapsed = 0.162760s
% node=32 cost=207.000000 depth=16
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:binunionIR) (A:fofType) (X:fofType) (x0:((in X) (powerset A))) (Y:fofType) (x1:((in Y) (powerset A))) (Xx:fofType) (x2:((in Xx) A)) (x3:(((in Xx) ((binunion X) Y))->False)) (x4:((in Xx) Y))=> (x3 ((((x X) Y) Xx) x4)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------