TSTP Solution File: SEU732^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU732^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n094.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:57 EDT 2014

% Result   : Theorem 3.39s
% Output   : Proof 3.39s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU732^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n094.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:20:16 CDT 2014
% % CPUTime  : 3.39 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x2416290>, <kernel.DependentProduct object at 0x23f72d8>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x2416d88>, <kernel.DependentProduct object at 0x23f7368>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x2416290>, <kernel.DependentProduct object at 0x23f7368>) of role type named binintersect_type
% Using role type
% Declaring binintersect:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x26602d8>, <kernel.DependentProduct object at 0x23f7200>) of role type named setminus_type
% Using role type
% Declaring setminus:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x2416290>, <kernel.Sort object at 0x20ec098>) of role type named setminusER_type
% Using role type
% Declaring setminusER:Prop
% FOF formula (((eq Prop) setminusER) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((setminus A) B))->(((in Xx) B)->False)))) of role definition named setminusER
% A new definition: (((eq Prop) setminusER) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((setminus A) B))->(((in Xx) B)->False))))
% Defined: setminusER:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((setminus A) B))->(((in Xx) B)->False)))
% FOF formula (<kernel.Constant object at 0x20ef6c8>, <kernel.Sort object at 0x20ec098>) of role type named binintersectTELcontra_type
% Using role type
% Declaring binintersectTELcontra:Prop
% FOF formula (((eq Prop) binintersectTELcontra) (forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) X)->False)->(((in Xx) ((binintersect X) Y))->False))))))))) of role definition named binintersectTELcontra
% A new definition: (((eq Prop) binintersectTELcontra) (forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) X)->False)->(((in Xx) ((binintersect X) Y))->False)))))))))
% Defined: binintersectTELcontra:=(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) X)->False)->(((in Xx) ((binintersect X) Y))->False))))))))
% FOF formula (setminusER->(binintersectTELcontra->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False)))))))))) of role conjecture named complementTnotintersectT
% Conjecture to prove = (setminusER->(binintersectTELcontra->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False)))))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(setminusER->(binintersectTELcontra->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False))))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter powerset:(fofType->fofType).
% Parameter binintersect:(fofType->(fofType->fofType)).
% Parameter setminus:(fofType->(fofType->fofType)).
% Definition setminusER:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((setminus A) B))->(((in Xx) B)->False))):Prop.
% Definition binintersectTELcontra:=(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->((((in Xx) X)->False)->(((in Xx) ((binintersect X) Y))->False)))))))):Prop.
% Trying to prove (setminusER->(binintersectTELcontra->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False))))))))))
% Found x3:((in Xx) A)
% Found x3 as proof of ((in Xx) A)
% Found x3:((in Xx) A)
% Found x3 as proof of ((in Xx) A)
% Found x2:((in Y) (powerset A))
% Found x2 as proof of ((in Y) (powerset A))
% Found x3:((in Xx) A)
% Found x3 as proof of ((in Xx) A)
% Found x2:((in Y) (powerset A))
% Found x2 as proof of ((in Y) (powerset A))
% Found x3:((in Xx) A)
% Found x3 as proof of ((in Xx) A)
% Found x1:((in X) (powerset A))
% Found x1 as proof of ((in X) (powerset A))
% Found x4:((in Xx) ((setminus A) X))
% Found x4 as proof of ((in Xx) ((setminus A) X))
% Found x5:((in Xx) ((binintersect X) Y))
% Found x5 as proof of ((in Xx) ((binintersect X) Y))
% Found x3:((in Xx) A)
% Found x3 as proof of ((in Xx) A)
% Found x2:((in Y) (powerset A))
% Found x2 as proof of ((in Y) (powerset A))
% Found x4:((in Xx) ((setminus A) X))
% Found x4 as proof of ((in Xx) ((setminus A) X))
% Found x3:((in Xx) A)
% Found x3 as proof of ((in Xx) A)
% Found x1:((in X) (powerset A))
% Found x1 as proof of ((in X) (powerset A))
% Found x2:((in Y) (powerset A))
% Found x2 as proof of ((in Y) (powerset A))
% Found x6000:=(x600 x4):(((in Xx) X)->False)
% Found (x600 x4) as proof of (((in Xx) X)->False)
% Found ((x60 A) x4) as proof of (((in Xx) X)->False)
% Found (((fun (A0:fofType)=> ((x6 A0) Xx)) A) x4) as proof of (((in Xx) X)->False)
% Found (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4) as proof of (((in Xx) X)->False)
% Found (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4) as proof of (((in Xx) X)->False)
% Found ((((x0000 x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4)) as proof of False
% Found (((((x000 A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4)) as proof of False
% Found ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> ((((((x00 A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4)) as proof of False
% Found ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4)) as proof of False
% Found (fun (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of False
% Found (fun (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of (((in Xx) ((binintersect X) Y))->False)
% Found (fun (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of (((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False))
% Found (fun (Xx:fofType) (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False)))
% Found (fun (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of (forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False))))
% Found (fun (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False)))))
% Found (fun (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of (forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False))))))
% Found (fun (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False)))))))
% Found (fun (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of (forall (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False))))))))
% Found (fun (x0:binintersectTELcontra) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of (forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False))))))))
% Found (fun (x:setminusER) (x0:binintersectTELcontra) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of (binintersectTELcontra->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False)))))))))
% Found (fun (x:setminusER) (x0:binintersectTELcontra) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4))) as proof of (setminusER->(binintersectTELcontra->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in Xx) ((setminus A) X))->(((in Xx) ((binintersect X) Y))->False))))))))))
% Got proof (fun (x:setminusER) (x0:binintersectTELcontra) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4)))
% Time elapsed = 3.047766s
% node=662 cost=1096.000000 depth=20
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:setminusER) (x0:binintersectTELcontra) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in Xx) ((setminus A) X))) (x5:((in Xx) ((binintersect X) Y)))=> ((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0))) (x8:((in Xx) A0)) (x9:(((in Xx) X)->False))=> (((((((fun (A0:fofType) (x6:((in X) (powerset A0))) (x7:((in Y) (powerset A0)))=> ((((((x0 A0) X) x6) Y) x7) Xx)) A0) x6) x7) x8) x9) x5)) A) x1) x2) x3) (((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) X)) A0) Xx)) A) x4)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------