TSTP Solution File: SEU718^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU718^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n098.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:55 EDT 2014

% Result   : Theorem 0.47s
% Output   : Proof 0.47s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU718^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n098.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:17:36 CDT 2014
% % CPUTime  : 0.47 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x23ae4d0>, <kernel.DependentProduct object at 0x23aeab8>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x235a6c8>, <kernel.DependentProduct object at 0x23ae488>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x235a6c8>, <kernel.DependentProduct object at 0x23ae248>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x23ae680>, <kernel.Sort object at 0x1e416c8>) of role type named subsetE_type
% Using role type
% Declaring subsetE:Prop
% FOF formula (((eq Prop) subsetE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B))))) of role definition named subsetE
% A new definition: (((eq Prop) subsetE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B)))))
% Defined: subsetE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B))))
% FOF formula (<kernel.Constant object at 0x23ae878>, <kernel.Sort object at 0x1e416c8>) of role type named powersetE1_type
% Using role type
% Declaring powersetE1:Prop
% FOF formula (((eq Prop) powersetE1) (forall (A:fofType) (B:fofType), (((in B) (powerset A))->((subset B) A)))) of role definition named powersetE1
% A new definition: (((eq Prop) powersetE1) (forall (A:fofType) (B:fofType), (((in B) (powerset A))->((subset B) A))))
% Defined: powersetE1:=(forall (A:fofType) (B:fofType), (((in B) (powerset A))->((subset B) A)))
% FOF formula (subsetE->(powersetE1->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y))))))))))) of role conjecture named powersetTE1
% Conjecture to prove = (subsetE->(powersetE1->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y))))))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(subsetE->(powersetE1->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y)))))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter powerset:(fofType->fofType).
% Parameter subset:(fofType->(fofType->Prop)).
% Definition subsetE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B)))):Prop.
% Definition powersetE1:=(forall (A:fofType) (B:fofType), (((in B) (powerset A))->((subset B) A))):Prop.
% Trying to prove (subsetE->(powersetE1->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y)))))))))))
% Found x0000:=(x000 x4):((subset X) Y)
% Found (x000 x4) as proof of ((subset X) Y)
% Found ((x00 X) x4) as proof of ((subset X) Y)
% Found (((x0 Y) X) x4) as proof of ((subset X) Y)
% Found (((x0 Y) X) x4) as proof of ((subset X) Y)
% Found (x500 (((x0 Y) X) x4)) as proof of (((in Xx) X)->((in Xx) Y))
% Found ((x50 Xx) (((x0 Y) X) x4)) as proof of (((in Xx) X)->((in Xx) Y))
% Found (((x5 Y) Xx) (((x0 Y) X) x4)) as proof of (((in Xx) X)->((in Xx) Y))
% Found ((((x X) Y) Xx) (((x0 Y) X) x4)) as proof of (((in Xx) X)->((in Xx) Y))
% Found (fun (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4))) as proof of (((in Xx) X)->((in Xx) Y))
% Found (fun (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4))) as proof of (((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y)))
% Found (fun (Xx:fofType) (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4))) as proof of (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y))))
% Found (fun (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4))) as proof of (forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y)))))
% Found (fun (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4))) as proof of (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y))))))
% Found (fun (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4))) as proof of (forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y)))))))
% Found (fun (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4))) as proof of (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y))))))))
% Found (fun (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4))) as proof of (forall (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y)))))))))
% Found (fun (x0:powersetE1) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4))) as proof of (forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y)))))))))
% Found (fun (x:subsetE) (x0:powersetE1) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4))) as proof of (powersetE1->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y))))))))))
% Found (fun (x:subsetE) (x0:powersetE1) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4))) as proof of (subsetE->(powersetE1->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->(forall (Xx:fofType), (((in Xx) A)->(((in X) (powerset Y))->(((in Xx) X)->((in Xx) Y)))))))))))
% Got proof (fun (x:subsetE) (x0:powersetE1) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4)))
% Time elapsed = 0.138175s
% node=21 cost=267.000000 depth=18
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:subsetE) (x0:powersetE1) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (Xx:fofType) (x3:((in Xx) A)) (x4:((in X) (powerset Y)))=> ((((x X) Y) Xx) (((x0 Y) X) x4)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------