TSTP Solution File: SEU641^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU641^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n106.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:41 EDT 2014

% Result   : Theorem 0.69s
% Output   : Proof 0.69s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU641^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n106.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:00:06 CDT 2014
% % CPUTime  : 0.69 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x13bcd40>, <kernel.DependentProduct object at 0x13bcd88>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0xf82c68>, <kernel.Single object at 0x13bc7e8>) of role type named emptyset_type
% Using role type
% Declaring emptyset:fofType
% FOF formula (<kernel.Constant object at 0x13bcd88>, <kernel.DependentProduct object at 0x13bc290>) of role type named setadjoin_type
% Using role type
% Declaring setadjoin:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x13bcf80>, <kernel.Sort object at 0xe476c8>) of role type named setadjoinIL_type
% Using role type
% Declaring setadjoinIL:Prop
% FOF formula (((eq Prop) setadjoinIL) (forall (Xx:fofType) (Xy:fofType), ((in Xx) ((setadjoin Xx) Xy)))) of role definition named setadjoinIL
% A new definition: (((eq Prop) setadjoinIL) (forall (Xx:fofType) (Xy:fofType), ((in Xx) ((setadjoin Xx) Xy))))
% Defined: setadjoinIL:=(forall (Xx:fofType) (Xy:fofType), ((in Xx) ((setadjoin Xx) Xy)))
% FOF formula (<kernel.Constant object at 0x13bccb0>, <kernel.Sort object at 0xe476c8>) of role type named uniqinunit_type
% Using role type
% Declaring uniqinunit:Prop
% FOF formula (((eq Prop) uniqinunit) (forall (Xx:fofType) (Xy:fofType), (((in Xx) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy)))) of role definition named uniqinunit
% A new definition: (((eq Prop) uniqinunit) (forall (Xx:fofType) (Xy:fofType), (((in Xx) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy))))
% Defined: uniqinunit:=(forall (Xx:fofType) (Xy:fofType), (((in Xx) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy)))
% FOF formula (setadjoinIL->(uniqinunit->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy))))) of role conjecture named singletonsuniq
% Conjecture to prove = (setadjoinIL->(uniqinunit->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy))))):Prop
% We need to prove ['(setadjoinIL->(uniqinunit->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy)))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter emptyset:fofType.
% Parameter setadjoin:(fofType->(fofType->fofType)).
% Definition setadjoinIL:=(forall (Xx:fofType) (Xy:fofType), ((in Xx) ((setadjoin Xx) Xy))):Prop.
% Definition uniqinunit:=(forall (Xx:fofType) (Xy:fofType), (((in Xx) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy))):Prop.
% Trying to prove (setadjoinIL->(uniqinunit->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy)))))
% Found x20:=(x2 emptyset):((in Xx) ((setadjoin Xx) emptyset))
% Found (x2 emptyset) as proof of ((in Xx) ((setadjoin Xx) emptyset))
% Found ((x Xx) emptyset) as proof of ((in Xx) ((setadjoin Xx) emptyset))
% Found ((x Xx) emptyset) as proof of ((in Xx) ((setadjoin Xx) emptyset))
% Found (x10 ((x Xx) emptyset)) as proof of ((in Xx) ((setadjoin Xy) emptyset))
% Found ((x1 (in Xx)) ((x Xx) emptyset)) as proof of ((in Xx) ((setadjoin Xy) emptyset))
% Found ((x1 (in Xx)) ((x Xx) emptyset)) as proof of ((in Xx) ((setadjoin Xy) emptyset))
% Found (x000 ((x1 (in Xx)) ((x Xx) emptyset))) as proof of (((eq fofType) Xx) Xy)
% Found ((x00 Xy) ((x1 (in Xx)) ((x Xx) emptyset))) as proof of (((eq fofType) Xx) Xy)
% Found (((x0 Xx) Xy) ((x1 (in Xx)) ((x Xx) emptyset))) as proof of (((eq fofType) Xx) Xy)
% Found (fun (x1:(((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset)))=> (((x0 Xx) Xy) ((x1 (in Xx)) ((x Xx) emptyset)))) as proof of (((eq fofType) Xx) Xy)
% Found (fun (Xy:fofType) (x1:(((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset)))=> (((x0 Xx) Xy) ((x1 (in Xx)) ((x Xx) emptyset)))) as proof of ((((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy))
% Found (fun (Xx:fofType) (Xy:fofType) (x1:(((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset)))=> (((x0 Xx) Xy) ((x1 (in Xx)) ((x Xx) emptyset)))) as proof of (forall (Xy:fofType), ((((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy)))
% Found (fun (x0:uniqinunit) (Xx:fofType) (Xy:fofType) (x1:(((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset)))=> (((x0 Xx) Xy) ((x1 (in Xx)) ((x Xx) emptyset)))) as proof of (forall (Xx:fofType) (Xy:fofType), ((((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy)))
% Found (fun (x:setadjoinIL) (x0:uniqinunit) (Xx:fofType) (Xy:fofType) (x1:(((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset)))=> (((x0 Xx) Xy) ((x1 (in Xx)) ((x Xx) emptyset)))) as proof of (uniqinunit->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy))))
% Found (fun (x:setadjoinIL) (x0:uniqinunit) (Xx:fofType) (Xy:fofType) (x1:(((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset)))=> (((x0 Xx) Xy) ((x1 (in Xx)) ((x Xx) emptyset)))) as proof of (setadjoinIL->(uniqinunit->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy)))))
% Got proof (fun (x:setadjoinIL) (x0:uniqinunit) (Xx:fofType) (Xy:fofType) (x1:(((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset)))=> (((x0 Xx) Xy) ((x1 (in Xx)) ((x Xx) emptyset))))
% Time elapsed = 0.362473s
% node=55 cost=-24.000000 depth=14
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:setadjoinIL) (x0:uniqinunit) (Xx:fofType) (Xy:fofType) (x1:(((eq fofType) ((setadjoin Xx) emptyset)) ((setadjoin Xy) emptyset)))=> (((x0 Xx) Xy) ((x1 (in Xx)) ((x Xx) emptyset))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------