TSTP Solution File: SEU626^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU626^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n113.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:38 EDT 2014

% Result   : Theorem 0.46s
% Output   : Proof 0.46s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU626^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n113.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:56:41 CDT 2014
% % CPUTime  : 0.46 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1edbf80>, <kernel.DependentProduct object at 0x1edbd40>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1bc8248>, <kernel.Single object at 0x1edbcb0>) of role type named emptyset_type
% Using role type
% Declaring emptyset:fofType
% FOF formula (<kernel.Constant object at 0x1edbd40>, <kernel.DependentProduct object at 0x1edb560>) of role type named setadjoin_type
% Using role type
% Declaring setadjoin:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x1edb638>, <kernel.DependentProduct object at 0x1edbef0>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x1edbea8>, <kernel.DependentProduct object at 0x1edbd40>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1edb368>, <kernel.Sort object at 0x1bc0518>) of role type named powersetI1_type
% Using role type
% Declaring powersetI1:Prop
% FOF formula (((eq Prop) powersetI1) (forall (A:fofType) (B:fofType), (((subset B) A)->((in B) (powerset A))))) of role definition named powersetI1
% A new definition: (((eq Prop) powersetI1) (forall (A:fofType) (B:fofType), (((subset B) A)->((in B) (powerset A)))))
% Defined: powersetI1:=(forall (A:fofType) (B:fofType), (((subset B) A)->((in B) (powerset A))))
% FOF formula (<kernel.Constant object at 0x1bc0638>, <kernel.DependentProduct object at 0x1edb998>) of role type named binunion_type
% Using role type
% Declaring binunion:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x1bc0638>, <kernel.Sort object at 0x1bc0518>) of role type named upairsubunion_type
% Using role type
% Declaring upairsubunion:Prop
% FOF formula (((eq Prop) upairsubunion) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B))))))) of role definition named upairsubunion
% A new definition: (((eq Prop) upairsubunion) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B)))))))
% Defined: upairsubunion:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B))))))
% FOF formula (powersetI1->(upairsubunion->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B))))))))) of role conjecture named upairinpowunion
% Conjecture to prove = (powersetI1->(upairsubunion->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B))))))))):Prop
% We need to prove ['(powersetI1->(upairsubunion->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B)))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter emptyset:fofType.
% Parameter setadjoin:(fofType->(fofType->fofType)).
% Parameter powerset:(fofType->fofType).
% Parameter subset:(fofType->(fofType->Prop)).
% Definition powersetI1:=(forall (A:fofType) (B:fofType), (((subset B) A)->((in B) (powerset A)))):Prop.
% Parameter binunion:(fofType->(fofType->fofType)).
% Definition upairsubunion:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B)))))):Prop.
% Trying to prove (powersetI1->(upairsubunion->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B)))))))))
% Found x0000000:=(x000000 x2):((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B))
% Found (x000000 x2) as proof of ((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B))
% Found ((x00000 Xy) x2) as proof of ((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B))
% Found (((x0000 x1) Xy) x2) as proof of ((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B))
% Found ((((x000 Xx) x1) Xy) x2) as proof of ((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B))
% Found (((((x00 B) Xx) x1) Xy) x2) as proof of ((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B))
% Found ((((((x0 A) B) Xx) x1) Xy) x2) as proof of ((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B))
% Found ((((((x0 A) B) Xx) x1) Xy) x2) as proof of ((subset ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((binunion A) B))
% Found (x30 ((((((x0 A) B) Xx) x1) Xy) x2)) as proof of ((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B)))
% Found ((x3 ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2)) as proof of ((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B)))
% Found (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2)) as proof of ((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B)))
% Found (fun (x2:((in Xy) B))=> (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2))) as proof of ((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B)))
% Found (fun (Xy:fofType) (x2:((in Xy) B))=> (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2))) as proof of (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B))))
% Found (fun (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) B))=> (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2))) as proof of (forall (Xy:fofType), (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B)))))
% Found (fun (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) B))=> (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2))) as proof of (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B))))))
% Found (fun (B:fofType) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) B))=> (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2))) as proof of (forall (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B)))))))
% Found (fun (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) B))=> (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2))) as proof of (forall (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B)))))))
% Found (fun (x0:upairsubunion) (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) B))=> (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2))) as proof of (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B)))))))
% Found (fun (x:powersetI1) (x0:upairsubunion) (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) B))=> (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2))) as proof of (upairsubunion->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B))))))))
% Found (fun (x:powersetI1) (x0:upairsubunion) (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) B))=> (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2))) as proof of (powersetI1->(upairsubunion->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(forall (Xy:fofType), (((in Xy) B)->((in ((setadjoin Xx) ((setadjoin Xy) emptyset))) (powerset ((binunion A) B)))))))))
% Got proof (fun (x:powersetI1) (x0:upairsubunion) (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) B))=> (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2)))
% Time elapsed = 0.137062s
% node=19 cost=293.000000 depth=18
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:powersetI1) (x0:upairsubunion) (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) A)) (Xy:fofType) (x2:((in Xy) B))=> (((x ((binunion A) B)) ((setadjoin Xx) ((setadjoin Xy) emptyset))) ((((((x0 A) B) Xx) x1) Xy) x2)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------