TSTP Solution File: SEU623^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU623^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n187.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:38 EDT 2014

% Result   : Theorem 0.53s
% Output   : Proof 0.53s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU623^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n187.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:56:01 CDT 2014
% % CPUTime  : 0.53 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1ae4f80>, <kernel.DependentProduct object at 0x1ae4830>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1ebc5f0>, <kernel.Single object at 0x1ae45a8>) of role type named emptyset_type
% Using role type
% Declaring emptyset:fofType
% FOF formula (<kernel.Constant object at 0x1ae4830>, <kernel.DependentProduct object at 0x1ae4ef0>) of role type named setadjoin_type
% Using role type
% Declaring setadjoin:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x1ae4d88>, <kernel.DependentProduct object at 0x1ae4f38>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x1ae4a70>, <kernel.DependentProduct object at 0x1ae4830>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1ae4908>, <kernel.Sort object at 0x19c5128>) of role type named subsetE_type
% Using role type
% Declaring subsetE:Prop
% FOF formula (((eq Prop) subsetE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B))))) of role definition named subsetE
% A new definition: (((eq Prop) subsetE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B)))))
% Defined: subsetE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B))))
% FOF formula (<kernel.Constant object at 0x1ae4ef0>, <kernel.Sort object at 0x19c5128>) of role type named powersetsubset_type
% Using role type
% Declaring powersetsubset:Prop
% FOF formula (((eq Prop) powersetsubset) (forall (A:fofType) (B:fofType), (((subset A) B)->((subset (powerset A)) (powerset B))))) of role definition named powersetsubset
% A new definition: (((eq Prop) powersetsubset) (forall (A:fofType) (B:fofType), (((subset A) B)->((subset (powerset A)) (powerset B)))))
% Defined: powersetsubset:=(forall (A:fofType) (B:fofType), (((subset A) B)->((subset (powerset A)) (powerset B))))
% FOF formula (<kernel.Constant object at 0x1ae4638>, <kernel.DependentProduct object at 0x1ae4368>) of role type named binunion_type
% Using role type
% Declaring binunion:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x1ae43f8>, <kernel.Sort object at 0x19c5128>) of role type named binunionLsub_type
% Using role type
% Declaring binunionLsub:Prop
% FOF formula (((eq Prop) binunionLsub) (forall (A:fofType) (B:fofType), ((subset A) ((binunion A) B)))) of role definition named binunionLsub
% A new definition: (((eq Prop) binunionLsub) (forall (A:fofType) (B:fofType), ((subset A) ((binunion A) B))))
% Defined: binunionLsub:=(forall (A:fofType) (B:fofType), ((subset A) ((binunion A) B)))
% FOF formula (<kernel.Constant object at 0x1ae4ef0>, <kernel.Sort object at 0x19c5128>) of role type named singletoninpowerset_type
% Using role type
% Declaring singletoninpowerset:Prop
% FOF formula (((eq Prop) singletoninpowerset) (forall (A:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset A))))) of role definition named singletoninpowerset
% A new definition: (((eq Prop) singletoninpowerset) (forall (A:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset A)))))
% Defined: singletoninpowerset:=(forall (A:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset A))))
% FOF formula (subsetE->(powersetsubset->(binunionLsub->(singletoninpowerset->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B))))))))) of role conjecture named singletoninpowunion
% Conjecture to prove = (subsetE->(powersetsubset->(binunionLsub->(singletoninpowerset->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B))))))))):Prop
% We need to prove ['(subsetE->(powersetsubset->(binunionLsub->(singletoninpowerset->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B)))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter emptyset:fofType.
% Parameter setadjoin:(fofType->(fofType->fofType)).
% Parameter powerset:(fofType->fofType).
% Parameter subset:(fofType->(fofType->Prop)).
% Definition subsetE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((subset A) B)->(((in Xx) A)->((in Xx) B)))):Prop.
% Definition powersetsubset:=(forall (A:fofType) (B:fofType), (((subset A) B)->((subset (powerset A)) (powerset B)))):Prop.
% Parameter binunion:(fofType->(fofType->fofType)).
% Definition binunionLsub:=(forall (A:fofType) (B:fofType), ((subset A) ((binunion A) B))):Prop.
% Definition singletoninpowerset:=(forall (A:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset A)))):Prop.
% Trying to prove (subsetE->(powersetsubset->(binunionLsub->(singletoninpowerset->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B)))))))))
% Found x100:=(x10 B):((subset A) ((binunion A) B))
% Found (x10 B) as proof of ((subset A) ((binunion A) B))
% Found ((x1 A) B) as proof of ((subset A) ((binunion A) B))
% Found ((x1 A) B) as proof of ((subset A) ((binunion A) B))
% Found (x4000 ((x1 A) B)) as proof of ((in Xx) ((binunion A) B))
% Found ((fun (x5:((subset A) ((binunion A) B)))=> ((x400 x5) x3)) ((x1 A) B)) as proof of ((in Xx) ((binunion A) B))
% Found ((fun (x5:((subset A) ((binunion A) B)))=> (((x40 A) x5) x3)) ((x1 A) B)) as proof of ((in Xx) ((binunion A) B))
% Found ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> ((x4 A0) Xx)) A) x5) x3)) ((x1 A) B)) as proof of ((in Xx) ((binunion A) B))
% Found ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B)) as proof of ((in Xx) ((binunion A) B))
% Found ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B)) as proof of ((in Xx) ((binunion A) B))
% Found (x200 ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B))) as proof of ((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B)))
% Found ((x20 Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B))) as proof of ((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B)))
% Found (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B))) as proof of ((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B)))
% Found (fun (x3:((in Xx) A))=> (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B)))) as proof of ((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B)))
% Found (fun (Xx:fofType) (x3:((in Xx) A))=> (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B)))) as proof of (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B))))
% Found (fun (B:fofType) (Xx:fofType) (x3:((in Xx) A))=> (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B)))) as proof of (forall (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B)))))
% Found (fun (A:fofType) (B:fofType) (Xx:fofType) (x3:((in Xx) A))=> (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B)))) as proof of (forall (B:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B)))))
% Found (fun (x2:singletoninpowerset) (A:fofType) (B:fofType) (Xx:fofType) (x3:((in Xx) A))=> (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B)))) as proof of (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B)))))
% Found (fun (x1:binunionLsub) (x2:singletoninpowerset) (A:fofType) (B:fofType) (Xx:fofType) (x3:((in Xx) A))=> (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B)))) as proof of (singletoninpowerset->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B))))))
% Found (fun (x0:powersetsubset) (x1:binunionLsub) (x2:singletoninpowerset) (A:fofType) (B:fofType) (Xx:fofType) (x3:((in Xx) A))=> (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B)))) as proof of (binunionLsub->(singletoninpowerset->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B)))))))
% Found (fun (x:subsetE) (x0:powersetsubset) (x1:binunionLsub) (x2:singletoninpowerset) (A:fofType) (B:fofType) (Xx:fofType) (x3:((in Xx) A))=> (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B)))) as proof of (powersetsubset->(binunionLsub->(singletoninpowerset->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B))))))))
% Found (fun (x:subsetE) (x0:powersetsubset) (x1:binunionLsub) (x2:singletoninpowerset) (A:fofType) (B:fofType) (Xx:fofType) (x3:((in Xx) A))=> (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B)))) as proof of (subsetE->(powersetsubset->(binunionLsub->(singletoninpowerset->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->((in ((setadjoin Xx) emptyset)) (powerset ((binunion A) B)))))))))
% Got proof (fun (x:subsetE) (x0:powersetsubset) (x1:binunionLsub) (x2:singletoninpowerset) (A:fofType) (B:fofType) (Xx:fofType) (x3:((in Xx) A))=> (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B))))
% Time elapsed = 0.188401s
% node=35 cost=454.000000 depth=20
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:subsetE) (x0:powersetsubset) (x1:binunionLsub) (x2:singletoninpowerset) (A:fofType) (B:fofType) (Xx:fofType) (x3:((in Xx) A))=> (((x2 ((binunion A) B)) Xx) ((fun (x5:((subset A) ((binunion A) B)))=> ((((fun (A0:fofType)=> (((fun (A0:fofType)=> ((x A0) ((binunion A) B))) A0) Xx)) A) x5) x3)) ((x1 A) B))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------