TSTP Solution File: SEU620^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU620^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n118.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:37 EDT 2014

% Result   : Theorem 0.35s
% Output   : Proof 0.35s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU620^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n118.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:55:11 CDT 2014
% % CPUTime  : 0.35 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0xde51b8>, <kernel.DependentProduct object at 0xde55a8>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x10352d8>, <kernel.Single object at 0xde5e18>) of role type named emptyset_type
% Using role type
% Declaring emptyset:fofType
% FOF formula (<kernel.Constant object at 0xde55a8>, <kernel.DependentProduct object at 0x103c710>) of role type named setadjoin_type
% Using role type
% Declaring setadjoin:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0xde5758>, <kernel.DependentProduct object at 0x103c200>) of role type named setunion_type
% Using role type
% Declaring setunion:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0xde5638>, <kernel.DependentProduct object at 0x103c170>) of role type named iskpair_type
% Using role type
% Declaring iskpair:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) iskpair) (fun (A:fofType)=> ((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) (setunion A))) ((ex fofType) (fun (Xy:fofType)=> ((and ((in Xy) (setunion A))) (((eq fofType) A) ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset))))))))))) of role definition named iskpair
% A new definition: (((eq (fofType->Prop)) iskpair) (fun (A:fofType)=> ((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) (setunion A))) ((ex fofType) (fun (Xy:fofType)=> ((and ((in Xy) (setunion A))) (((eq fofType) A) ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset)))))))))))
% Defined: iskpair:=(fun (A:fofType)=> ((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) (setunion A))) ((ex fofType) (fun (Xy:fofType)=> ((and ((in Xy) (setunion A))) (((eq fofType) A) ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset))))))))))
% FOF formula (<kernel.Constant object at 0xde5ef0>, <kernel.Sort object at 0xacfb48>) of role type named kpairiskpair_type
% Using role type
% Declaring kpairiskpair:Prop
% FOF formula (((eq Prop) kpairiskpair) (forall (Xx:fofType) (Xy:fofType), (iskpair ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset))))) of role definition named kpairiskpair
% A new definition: (((eq Prop) kpairiskpair) (forall (Xx:fofType) (Xy:fofType), (iskpair ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset)))))
% Defined: kpairiskpair:=(forall (Xx:fofType) (Xy:fofType), (iskpair ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset))))
% FOF formula (<kernel.Constant object at 0xde5ef0>, <kernel.DependentProduct object at 0x103c200>) of role type named kpair_type
% Using role type
% Declaring kpair:(fofType->(fofType->fofType))
% FOF formula (((eq (fofType->(fofType->fofType))) kpair) (fun (Xx:fofType) (Xy:fofType)=> ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset)))) of role definition named kpair
% A new definition: (((eq (fofType->(fofType->fofType))) kpair) (fun (Xx:fofType) (Xy:fofType)=> ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset))))
% Defined: kpair:=(fun (Xx:fofType) (Xy:fofType)=> ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset)))
% FOF formula (kpairiskpair->(forall (Xx:fofType) (Xy:fofType), (iskpair ((kpair Xx) Xy)))) of role conjecture named kpairp
% Conjecture to prove = (kpairiskpair->(forall (Xx:fofType) (Xy:fofType), (iskpair ((kpair Xx) Xy)))):Prop
% We need to prove ['(kpairiskpair->(forall (Xx:fofType) (Xy:fofType), (iskpair ((kpair Xx) Xy))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter emptyset:fofType.
% Parameter setadjoin:(fofType->(fofType->fofType)).
% Parameter setunion:(fofType->fofType).
% Definition iskpair:=(fun (A:fofType)=> ((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) (setunion A))) ((ex fofType) (fun (Xy:fofType)=> ((and ((in Xy) (setunion A))) (((eq fofType) A) ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset)))))))))):(fofType->Prop).
% Definition kpairiskpair:=(forall (Xx:fofType) (Xy:fofType), (iskpair ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset)))):Prop.
% Definition kpair:=(fun (Xx:fofType) (Xy:fofType)=> ((setadjoin ((setadjoin Xx) emptyset)) ((setadjoin ((setadjoin Xx) ((setadjoin Xy) emptyset))) emptyset))):(fofType->(fofType->fofType)).
% Trying to prove (kpairiskpair->(forall (Xx:fofType) (Xy:fofType), (iskpair ((kpair Xx) Xy))))
% Found x:kpairiskpair
% Found (fun (x:kpairiskpair)=> x) as proof of (forall (Xx:fofType) (Xy:fofType), (iskpair ((kpair Xx) Xy)))
% Found (fun (x:kpairiskpair)=> x) as proof of (kpairiskpair->(forall (Xx:fofType) (Xy:fofType), (iskpair ((kpair Xx) Xy))))
% Got proof (fun (x:kpairiskpair)=> x)
% Time elapsed = 0.019181s
% node=1 cost=3.000000 depth=1
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:kpairiskpair)=> x)
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------