TSTP Solution File: SEU611^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU611^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n090.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:36 EDT 2014

% Result   : Timeout 300.03s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU611^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n090.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:53:16 CDT 2014
% % CPUTime  : 300.03 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x199ab48>, <kernel.DependentProduct object at 0x199a560>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1dd2c20>, <kernel.DependentProduct object at 0x199a7e8>) of role type named dsetconstr_type
% Using role type
% Declaring dsetconstr:(fofType->((fofType->Prop)->fofType))
% FOF formula (<kernel.Constant object at 0x199a518>, <kernel.Sort object at 0x1864d88>) of role type named dsetconstrEL_type
% Using role type
% Declaring dsetconstrEL:Prop
% FOF formula (((eq Prop) dsetconstrEL) (forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->((in Xx) A)))) of role definition named dsetconstrEL
% A new definition: (((eq Prop) dsetconstrEL) (forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->((in Xx) A))))
% Defined: dsetconstrEL:=(forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->((in Xx) A)))
% FOF formula (<kernel.Constant object at 0x199a320>, <kernel.Sort object at 0x1864d88>) of role type named dsetconstrER_type
% Using role type
% Declaring dsetconstrER:Prop
% FOF formula (((eq Prop) dsetconstrER) (forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->(Xphi Xx)))) of role definition named dsetconstrER
% A new definition: (((eq Prop) dsetconstrER) (forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->(Xphi Xx))))
% Defined: dsetconstrER:=(forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->(Xphi Xx)))
% FOF formula (<kernel.Constant object at 0x199ab00>, <kernel.DependentProduct object at 0x199acf8>) of role type named binunion_type
% Using role type
% Declaring binunion:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x199a440>, <kernel.Sort object at 0x1864d88>) of role type named binunionE_type
% Using role type
% Declaring binunionE:Prop
% FOF formula (((eq Prop) binunionE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binunion A) B))->((or ((in Xx) A)) ((in Xx) B))))) of role definition named binunionE
% A new definition: (((eq Prop) binunionE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binunion A) B))->((or ((in Xx) A)) ((in Xx) B)))))
% Defined: binunionE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binunion A) B))->((or ((in Xx) A)) ((in Xx) B))))
% FOF formula (<kernel.Constant object at 0x199a320>, <kernel.DependentProduct object at 0x199a3b0>) of role type named symdiff_type
% Using role type
% Declaring symdiff:(fofType->(fofType->fofType))
% FOF formula (((eq (fofType->(fofType->fofType))) symdiff) (fun (A:fofType) (B:fofType)=> ((dsetconstr ((binunion A) B)) (fun (Xx:fofType)=> ((or (((in Xx) A)->False)) (((in Xx) B)->False)))))) of role definition named symdiff
% A new definition: (((eq (fofType->(fofType->fofType))) symdiff) (fun (A:fofType) (B:fofType)=> ((dsetconstr ((binunion A) B)) (fun (Xx:fofType)=> ((or (((in Xx) A)->False)) (((in Xx) B)->False))))))
% Defined: symdiff:=(fun (A:fofType) (B:fofType)=> ((dsetconstr ((binunion A) B)) (fun (Xx:fofType)=> ((or (((in Xx) A)->False)) (((in Xx) B)->False)))))
% FOF formula (dsetconstrEL->(dsetconstrER->(binunionE->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((symdiff A) B))->(forall (Xphi:Prop), ((((in Xx) A)->((((in Xx) B)->False)->Xphi))->(((((in Xx) A)->False)->(((in Xx) B)->Xphi))->Xphi)))))))) of role conjecture named symdiffE
% Conjecture to prove = (dsetconstrEL->(dsetconstrER->(binunionE->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((symdiff A) B))->(forall (Xphi:Prop), ((((in Xx) A)->((((in Xx) B)->False)->Xphi))->(((((in Xx) A)->False)->(((in Xx) B)->Xphi))->Xphi)))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(dsetconstrEL->(dsetconstrER->(binunionE->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((symdiff A) B))->(forall (Xphi:Prop), ((((in Xx) A)->((((in Xx) B)->False)->Xphi))->(((((in Xx) A)->False)->(((in Xx) B)->Xphi))->Xphi))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter dsetconstr:(fofType->((fofType->Prop)->fofType)).
% Definition dsetconstrEL:=(forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->((in Xx) A))):Prop.
% Definition dsetconstrER:=(forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->(Xphi Xx))):Prop.
% Parameter binunion:(fofType->(fofType->fofType)).
% Definition binunionE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binunion A) B))->((or ((in Xx) A)) ((in Xx) B)))):Prop.
% Definition symdiff:=(fun (A:fofType) (B:fofType)=> ((dsetconstr ((binunion A) B)) (fun (Xx:fofType)=> ((or (((in Xx) A)->False)) (((in Xx) B)->False))))):(fofType->(fofType->fofType)).
% Trying to prove (dsetconstrEL->(dsetconstrER->(binunionE->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((symdiff A) B))->(forall (Xphi:Prop), ((((in Xx) A)->((((in Xx) B)->False)->Xphi))->(((((in Xx) A)->False)->(((in Xx) B)->Xphi))->Xphi))))))))
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x6:((in Xx) A)
% Found x6 as proof of ((in Xx) A)
% Found x6:((in Xx) A)
% Found x6 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x6:((in Xx) A)
% Found x6 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x6:((in Xx) A)
% Found x6 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx) A)
% Found x5:((in Xx) A)
% Found x5 as proof of ((in Xx)
% EOF
%------------------------------------------------------------------------------