TSTP Solution File: SEU595^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU595^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n092.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:33 EDT 2014

% Result   : Theorem 0.39s
% Output   : Proof 0.39s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU595^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n092.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:50:21 CDT 2014
% % CPUTime  : 0.39 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0xd5bef0>, <kernel.DependentProduct object at 0x97f878>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0xdba680>, <kernel.DependentProduct object at 0x97fb90>) of role type named dsetconstr_type
% Using role type
% Declaring dsetconstr:(fofType->((fofType->Prop)->fofType))
% FOF formula (<kernel.Constant object at 0xdba680>, <kernel.Sort object at 0x845128>) of role type named dsetconstrER_type
% Using role type
% Declaring dsetconstrER:Prop
% FOF formula (((eq Prop) dsetconstrER) (forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->(Xphi Xx)))) of role definition named dsetconstrER
% A new definition: (((eq Prop) dsetconstrER) (forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->(Xphi Xx))))
% Defined: dsetconstrER:=(forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->(Xphi Xx)))
% FOF formula (<kernel.Constant object at 0xd5b0e0>, <kernel.DependentProduct object at 0x97f518>) of role type named binintersect_type
% Using role type
% Declaring binintersect:(fofType->(fofType->fofType))
% FOF formula (((eq (fofType->(fofType->fofType))) binintersect) (fun (A:fofType) (B:fofType)=> ((dsetconstr A) (fun (Xx:fofType)=> ((in Xx) B))))) of role definition named binintersect
% A new definition: (((eq (fofType->(fofType->fofType))) binintersect) (fun (A:fofType) (B:fofType)=> ((dsetconstr A) (fun (Xx:fofType)=> ((in Xx) B)))))
% Defined: binintersect:=(fun (A:fofType) (B:fofType)=> ((dsetconstr A) (fun (Xx:fofType)=> ((in Xx) B))))
% FOF formula (dsetconstrER->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) B)))) of role conjecture named binintersectER
% Conjecture to prove = (dsetconstrER->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) B)))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(dsetconstrER->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) B))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter dsetconstr:(fofType->((fofType->Prop)->fofType)).
% Definition dsetconstrER:=(forall (A:fofType) (Xphi:(fofType->Prop)) (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> (Xphi Xy))))->(Xphi Xx))):Prop.
% Definition binintersect:=(fun (A:fofType) (B:fofType)=> ((dsetconstr A) (fun (Xx:fofType)=> ((in Xx) B)))):(fofType->(fofType->fofType)).
% Trying to prove (dsetconstrER->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) B))))
% Found x00:=(x0 (fun (x3:fofType)=> ((in x3) B))):(forall (Xx:fofType), (((in Xx) ((dsetconstr A) (fun (Xy:fofType)=> ((in Xy) B))))->((in Xx) B)))
% Found (x0 (fun (x3:fofType)=> ((in x3) B))) as proof of (forall (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) B)))
% Found ((x A) (fun (x3:fofType)=> ((in x3) B))) as proof of (forall (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) B)))
% Found (fun (B:fofType)=> ((x A) (fun (x3:fofType)=> ((in x3) B)))) as proof of (forall (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) B)))
% Found (fun (A:fofType) (B:fofType)=> ((x A) (fun (x3:fofType)=> ((in x3) B)))) as proof of (forall (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) B)))
% Found (fun (x:dsetconstrER) (A:fofType) (B:fofType)=> ((x A) (fun (x3:fofType)=> ((in x3) B)))) as proof of (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) B)))
% Found (fun (x:dsetconstrER) (A:fofType) (B:fofType)=> ((x A) (fun (x3:fofType)=> ((in x3) B)))) as proof of (dsetconstrER->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) B))))
% Got proof (fun (x:dsetconstrER) (A:fofType) (B:fofType)=> ((x A) (fun (x3:fofType)=> ((in x3) B))))
% Time elapsed = 0.058519s
% node=6 cost=-179.000000 depth=5
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:dsetconstrER) (A:fofType) (B:fofType)=> ((x A) (fun (x3:fofType)=> ((in x3) B))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------