TSTP Solution File: SEU594^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU594^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n187.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:33 EDT 2014

% Result   : Theorem 0.70s
% Output   : Proof 0.70s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU594^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n187.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:50:16 CDT 2014
% % CPUTime  : 0.70 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x187d6c8>, <kernel.DependentProduct object at 0x187dc20>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1c550e0>, <kernel.DependentProduct object at 0x187d518>) of role type named dsetconstr_type
% Using role type
% Declaring dsetconstr:(fofType->((fofType->Prop)->fofType))
% FOF formula (<kernel.Constant object at 0x187d5f0>, <kernel.Sort object at 0x1763a28>) of role type named in__Cong_type
% Using role type
% Declaring in__Cong:Prop
% FOF formula (((eq Prop) in__Cong) (forall (A:fofType) (B:fofType), ((((eq fofType) A) B)->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) Xx) Xy)->((iff ((in Xx) A)) ((in Xy) B))))))) of role definition named in__Cong
% A new definition: (((eq Prop) in__Cong) (forall (A:fofType) (B:fofType), ((((eq fofType) A) B)->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) Xx) Xy)->((iff ((in Xx) A)) ((in Xy) B)))))))
% Defined: in__Cong:=(forall (A:fofType) (B:fofType), ((((eq fofType) A) B)->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) Xx) Xy)->((iff ((in Xx) A)) ((in Xy) B))))))
% FOF formula (<kernel.Constant object at 0x1cd2440>, <kernel.DependentProduct object at 0x187d5f0>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1cd2f38>, <kernel.Sort object at 0x1763a28>) of role type named subsetI1_type
% Using role type
% Declaring subsetI1:Prop
% FOF formula (((eq Prop) subsetI1) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B)))) of role definition named subsetI1
% A new definition: (((eq Prop) subsetI1) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B))))
% Defined: subsetI1:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B)))
% FOF formula (<kernel.Constant object at 0x1cd2440>, <kernel.DependentProduct object at 0x187d6c8>) of role type named binintersect_type
% Using role type
% Declaring binintersect:(fofType->(fofType->fofType))
% FOF formula (((eq (fofType->(fofType->fofType))) binintersect) (fun (A:fofType) (B:fofType)=> ((dsetconstr A) (fun (Xx:fofType)=> ((in Xx) B))))) of role definition named binintersect
% A new definition: (((eq (fofType->(fofType->fofType))) binintersect) (fun (A:fofType) (B:fofType)=> ((dsetconstr A) (fun (Xx:fofType)=> ((in Xx) B)))))
% Defined: binintersect:=(fun (A:fofType) (B:fofType)=> ((dsetconstr A) (fun (Xx:fofType)=> ((in Xx) B))))
% FOF formula (<kernel.Constant object at 0x187d6c8>, <kernel.Sort object at 0x1763a28>) of role type named binintersectEL_type
% Using role type
% Declaring binintersectEL:Prop
% FOF formula (((eq Prop) binintersectEL) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A)))) of role definition named binintersectEL
% A new definition: (((eq Prop) binintersectEL) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A))))
% Defined: binintersectEL:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A)))
% FOF formula (in__Cong->(subsetI1->(binintersectEL->(forall (A:fofType) (B:fofType), ((((eq fofType) ((binintersect A) B)) B)->((subset B) A)))))) of role conjecture named binintersectSubset3
% Conjecture to prove = (in__Cong->(subsetI1->(binintersectEL->(forall (A:fofType) (B:fofType), ((((eq fofType) ((binintersect A) B)) B)->((subset B) A)))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(in__Cong->(subsetI1->(binintersectEL->(forall (A:fofType) (B:fofType), ((((eq fofType) ((binintersect A) B)) B)->((subset B) A))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter dsetconstr:(fofType->((fofType->Prop)->fofType)).
% Definition in__Cong:=(forall (A:fofType) (B:fofType), ((((eq fofType) A) B)->(forall (Xx:fofType) (Xy:fofType), ((((eq fofType) Xx) Xy)->((iff ((in Xx) A)) ((in Xy) B)))))):Prop.
% Parameter subset:(fofType->(fofType->Prop)).
% Definition subsetI1:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B))):Prop.
% Definition binintersect:=(fun (A:fofType) (B:fofType)=> ((dsetconstr A) (fun (Xx:fofType)=> ((in Xx) B)))):(fofType->(fofType->fofType)).
% Definition binintersectEL:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A))):Prop.
% Trying to prove (in__Cong->(subsetI1->(binintersectEL->(forall (A:fofType) (B:fofType), ((((eq fofType) ((binintersect A) B)) B)->((subset B) A))))))
% Found x100:=(x10 B):(forall (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A)))
% Found (x10 B) as proof of (forall (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A)))
% Found ((x1 A) B) as proof of (forall (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A)))
% Found ((x1 A) B) as proof of (forall (Xx:fofType), (((in Xx) ((binintersect A) B))->((in Xx) A)))
% Found (x000 ((x1 A) B)) as proof of ((subset ((binintersect A) B)) A)
% Found ((x00 A) ((x1 A) B)) as proof of ((subset ((binintersect A) B)) A)
% Found (((x0 ((binintersect A) B)) A) ((x1 A) B)) as proof of ((subset ((binintersect A) B)) A)
% Found (((x0 ((binintersect A) B)) A) ((x1 A) B)) as proof of ((subset ((binintersect A) B)) A)
% Found (x20 (((x0 ((binintersect A) B)) A) ((x1 A) B))) as proof of ((subset B) A)
% Found ((x2 (fun (x4:fofType)=> ((subset x4) A))) (((x0 ((binintersect A) B)) A) ((x1 A) B))) as proof of ((subset B) A)
% Found (fun (x2:(((eq fofType) ((binintersect A) B)) B))=> ((x2 (fun (x4:fofType)=> ((subset x4) A))) (((x0 ((binintersect A) B)) A) ((x1 A) B)))) as proof of ((subset B) A)
% Found (fun (B:fofType) (x2:(((eq fofType) ((binintersect A) B)) B))=> ((x2 (fun (x4:fofType)=> ((subset x4) A))) (((x0 ((binintersect A) B)) A) ((x1 A) B)))) as proof of ((((eq fofType) ((binintersect A) B)) B)->((subset B) A))
% Found (fun (A:fofType) (B:fofType) (x2:(((eq fofType) ((binintersect A) B)) B))=> ((x2 (fun (x4:fofType)=> ((subset x4) A))) (((x0 ((binintersect A) B)) A) ((x1 A) B)))) as proof of (forall (B:fofType), ((((eq fofType) ((binintersect A) B)) B)->((subset B) A)))
% Found (fun (x1:binintersectEL) (A:fofType) (B:fofType) (x2:(((eq fofType) ((binintersect A) B)) B))=> ((x2 (fun (x4:fofType)=> ((subset x4) A))) (((x0 ((binintersect A) B)) A) ((x1 A) B)))) as proof of (forall (A:fofType) (B:fofType), ((((eq fofType) ((binintersect A) B)) B)->((subset B) A)))
% Found (fun (x0:subsetI1) (x1:binintersectEL) (A:fofType) (B:fofType) (x2:(((eq fofType) ((binintersect A) B)) B))=> ((x2 (fun (x4:fofType)=> ((subset x4) A))) (((x0 ((binintersect A) B)) A) ((x1 A) B)))) as proof of (binintersectEL->(forall (A:fofType) (B:fofType), ((((eq fofType) ((binintersect A) B)) B)->((subset B) A))))
% Found (fun (x:in__Cong) (x0:subsetI1) (x1:binintersectEL) (A:fofType) (B:fofType) (x2:(((eq fofType) ((binintersect A) B)) B))=> ((x2 (fun (x4:fofType)=> ((subset x4) A))) (((x0 ((binintersect A) B)) A) ((x1 A) B)))) as proof of (subsetI1->(binintersectEL->(forall (A:fofType) (B:fofType), ((((eq fofType) ((binintersect A) B)) B)->((subset B) A)))))
% Found (fun (x:in__Cong) (x0:subsetI1) (x1:binintersectEL) (A:fofType) (B:fofType) (x2:(((eq fofType) ((binintersect A) B)) B))=> ((x2 (fun (x4:fofType)=> ((subset x4) A))) (((x0 ((binintersect A) B)) A) ((x1 A) B)))) as proof of (in__Cong->(subsetI1->(binintersectEL->(forall (A:fofType) (B:fofType), ((((eq fofType) ((binintersect A) B)) B)->((subset B) A))))))
% Got proof (fun (x:in__Cong) (x0:subsetI1) (x1:binintersectEL) (A:fofType) (B:fofType) (x2:(((eq fofType) ((binintersect A) B)) B))=> ((x2 (fun (x4:fofType)=> ((subset x4) A))) (((x0 ((binintersect A) B)) A) ((x1 A) B))))
% Time elapsed = 0.362047s
% node=43 cost=-16.000000 depth=15
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:in__Cong) (x0:subsetI1) (x1:binintersectEL) (A:fofType) (B:fofType) (x2:(((eq fofType) ((binintersect A) B)) B))=> ((x2 (fun (x4:fofType)=> ((subset x4) A))) (((x0 ((binintersect A) B)) A) ((x1 A) B))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------