TSTP Solution File: SEU584^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU584^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n096.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:31 EDT 2014

% Result   : Theorem 0.43s
% Output   : Proof 0.43s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU584^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n096.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:48:26 CDT 2014
% % CPUTime  : 0.43 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1085638>, <kernel.DependentProduct object at 0x10858c0>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1085b48>, <kernel.Single object at 0x1085ab8>) of role type named emptyset_type
% Using role type
% Declaring emptyset:fofType
% FOF formula (<kernel.Constant object at 0x10858c0>, <kernel.DependentProduct object at 0x1085dd0>) of role type named setadjoin_type
% Using role type
% Declaring setadjoin:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x1085518>, <kernel.DependentProduct object at 0x10856c8>) of role type named setunion_type
% Using role type
% Declaring setunion:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x1085560>, <kernel.Sort object at 0xf64518>) of role type named setunionI_type
% Using role type
% Declaring setunionI:Prop
% FOF formula (((eq Prop) setunionI) (forall (A:fofType) (Xx:fofType) (B:fofType), (((in Xx) B)->(((in B) A)->((in Xx) (setunion A)))))) of role definition named setunionI
% A new definition: (((eq Prop) setunionI) (forall (A:fofType) (Xx:fofType) (B:fofType), (((in Xx) B)->(((in B) A)->((in Xx) (setunion A))))))
% Defined: setunionI:=(forall (A:fofType) (Xx:fofType) (B:fofType), (((in Xx) B)->(((in B) A)->((in Xx) (setunion A)))))
% FOF formula (<kernel.Constant object at 0x14dc0e0>, <kernel.DependentProduct object at 0x1085560>) of role type named binunion_type
% Using role type
% Declaring binunion:(fofType->(fofType->fofType))
% FOF formula (((eq (fofType->(fofType->fofType))) binunion) (fun (Xx:fofType) (Xy:fofType)=> (setunion ((setadjoin Xx) ((setadjoin Xy) emptyset))))) of role definition named binunion
% A new definition: (((eq (fofType->(fofType->fofType))) binunion) (fun (Xx:fofType) (Xy:fofType)=> (setunion ((setadjoin Xx) ((setadjoin Xy) emptyset)))))
% Defined: binunion:=(fun (Xx:fofType) (Xy:fofType)=> (setunion ((setadjoin Xx) ((setadjoin Xy) emptyset))))
% FOF formula (<kernel.Constant object at 0xf6edd0>, <kernel.Sort object at 0xf64518>) of role type named upairset2IR_type
% Using role type
% Declaring upairset2IR:Prop
% FOF formula (((eq Prop) upairset2IR) (forall (Xx:fofType) (Xy:fofType), ((in Xy) ((setadjoin Xx) ((setadjoin Xy) emptyset))))) of role definition named upairset2IR
% A new definition: (((eq Prop) upairset2IR) (forall (Xx:fofType) (Xy:fofType), ((in Xy) ((setadjoin Xx) ((setadjoin Xy) emptyset)))))
% Defined: upairset2IR:=(forall (Xx:fofType) (Xy:fofType), ((in Xy) ((setadjoin Xx) ((setadjoin Xy) emptyset))))
% FOF formula (setunionI->(upairset2IR->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B)))))) of role conjecture named binunionIR
% Conjecture to prove = (setunionI->(upairset2IR->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B)))))):Prop
% We need to prove ['(setunionI->(upairset2IR->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter emptyset:fofType.
% Parameter setadjoin:(fofType->(fofType->fofType)).
% Parameter setunion:(fofType->fofType).
% Definition setunionI:=(forall (A:fofType) (Xx:fofType) (B:fofType), (((in Xx) B)->(((in B) A)->((in Xx) (setunion A))))):Prop.
% Definition binunion:=(fun (Xx:fofType) (Xy:fofType)=> (setunion ((setadjoin Xx) ((setadjoin Xy) emptyset)))):(fofType->(fofType->fofType)).
% Definition upairset2IR:=(forall (Xx:fofType) (Xy:fofType), ((in Xy) ((setadjoin Xx) ((setadjoin Xy) emptyset)))):Prop.
% Trying to prove (setunionI->(upairset2IR->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B))))))
% Found x000:=(x00 B):((in B) ((setadjoin A) ((setadjoin B) emptyset)))
% Found (x00 B) as proof of ((in B) ((setadjoin A) ((setadjoin B) emptyset)))
% Found ((x0 A) B) as proof of ((in B) ((setadjoin A) ((setadjoin B) emptyset)))
% Found ((x0 A) B) as proof of ((in B) ((setadjoin A) ((setadjoin B) emptyset)))
% Found (x2000 ((x0 A) B)) as proof of ((in Xx) ((binunion A) B))
% Found ((x200 x1) ((x0 A) B)) as proof of ((in Xx) ((binunion A) B))
% Found (((x20 B) x1) ((x0 A) B)) as proof of ((in Xx) ((binunion A) B))
% Found ((((x2 Xx) B) x1) ((x0 A) B)) as proof of ((in Xx) ((binunion A) B))
% Found (((((x ((setadjoin A) ((setadjoin B) emptyset))) Xx) B) x1) ((x0 A) B)) as proof of ((in Xx) ((binunion A) B))
% Found (fun (x1:((in Xx) B))=> (((((x ((setadjoin A) ((setadjoin B) emptyset))) Xx) B) x1) ((x0 A) B))) as proof of ((in Xx) ((binunion A) B))
% Found (fun (Xx:fofType) (x1:((in Xx) B))=> (((((x ((setadjoin A) ((setadjoin B) emptyset))) Xx) B) x1) ((x0 A) B))) as proof of (((in Xx) B)->((in Xx) ((binunion A) B)))
% Found (fun (B:fofType) (Xx:fofType) (x1:((in Xx) B))=> (((((x ((setadjoin A) ((setadjoin B) emptyset))) Xx) B) x1) ((x0 A) B))) as proof of (forall (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B))))
% Found (fun (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) B))=> (((((x ((setadjoin A) ((setadjoin B) emptyset))) Xx) B) x1) ((x0 A) B))) as proof of (forall (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B))))
% Found (fun (x0:upairset2IR) (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) B))=> (((((x ((setadjoin A) ((setadjoin B) emptyset))) Xx) B) x1) ((x0 A) B))) as proof of (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B))))
% Found (fun (x:setunionI) (x0:upairset2IR) (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) B))=> (((((x ((setadjoin A) ((setadjoin B) emptyset))) Xx) B) x1) ((x0 A) B))) as proof of (upairset2IR->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B)))))
% Found (fun (x:setunionI) (x0:upairset2IR) (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) B))=> (((((x ((setadjoin A) ((setadjoin B) emptyset))) Xx) B) x1) ((x0 A) B))) as proof of (setunionI->(upairset2IR->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) B)->((in Xx) ((binunion A) B))))))
% Got proof (fun (x:setunionI) (x0:upairset2IR) (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) B))=> (((((x ((setadjoin A) ((setadjoin B) emptyset))) Xx) B) x1) ((x0 A) B)))
% Time elapsed = 0.103530s
% node=17 cost=210.000000 depth=14
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:setunionI) (x0:upairset2IR) (A:fofType) (B:fofType) (Xx:fofType) (x1:((in Xx) B))=> (((((x ((setadjoin A) ((setadjoin B) emptyset))) Xx) B) x1) ((x0 A) B)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------