TSTP Solution File: SEU581^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU581^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n094.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:31 EDT 2014

% Result   : Theorem 0.39s
% Output   : Proof 0.39s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU581^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n094.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:47:56 CDT 2014
% % CPUTime  : 0.39 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0xfdb320>, <kernel.DependentProduct object at 0xfdb8c0>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0xae1710>, <kernel.DependentProduct object at 0xfdb098>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0xfdb488>, <kernel.DependentProduct object at 0xfdb368>) of role type named dsetconstr_type
% Using role type
% Declaring dsetconstr:(fofType->((fofType->Prop)->fofType))
% FOF formula (<kernel.Constant object at 0xfdb5f0>, <kernel.DependentProduct object at 0xffaa28>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0xfdb3b0>, <kernel.Sort object at 0xae13f8>) of role type named powersetE1_type
% Using role type
% Declaring powersetE1:Prop
% FOF formula (((eq Prop) powersetE1) (forall (A:fofType) (B:fofType), (((in B) (powerset A))->((subset B) A)))) of role definition named powersetE1
% A new definition: (((eq Prop) powersetE1) (forall (A:fofType) (B:fofType), (((in B) (powerset A))->((subset B) A))))
% Defined: powersetE1:=(forall (A:fofType) (B:fofType), (((in B) (powerset A))->((subset B) A)))
% FOF formula (<kernel.Constant object at 0xfdb368>, <kernel.Sort object at 0xae13f8>) of role type named sepInPowerset_type
% Using role type
% Declaring sepInPowerset:Prop
% FOF formula (((eq Prop) sepInPowerset) (forall (A:fofType) (Xphi:(fofType->Prop)), ((in ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) (powerset A)))) of role definition named sepInPowerset
% A new definition: (((eq Prop) sepInPowerset) (forall (A:fofType) (Xphi:(fofType->Prop)), ((in ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) (powerset A))))
% Defined: sepInPowerset:=(forall (A:fofType) (Xphi:(fofType->Prop)), ((in ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) (powerset A)))
% FOF formula (powersetE1->(sepInPowerset->(forall (A:fofType) (Xphi:(fofType->Prop)), ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A)))) of role conjecture named sepSubset
% Conjecture to prove = (powersetE1->(sepInPowerset->(forall (A:fofType) (Xphi:(fofType->Prop)), ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A)))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(powersetE1->(sepInPowerset->(forall (A:fofType) (Xphi:(fofType->Prop)), ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter powerset:(fofType->fofType).
% Parameter dsetconstr:(fofType->((fofType->Prop)->fofType)).
% Parameter subset:(fofType->(fofType->Prop)).
% Definition powersetE1:=(forall (A:fofType) (B:fofType), (((in B) (powerset A))->((subset B) A))):Prop.
% Definition sepInPowerset:=(forall (A:fofType) (Xphi:(fofType->Prop)), ((in ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) (powerset A))):Prop.
% Trying to prove (powersetE1->(sepInPowerset->(forall (A:fofType) (Xphi:(fofType->Prop)), ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A))))
% Found x000:=(x00 Xphi):((in ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) (powerset A))
% Found (x00 Xphi) as proof of ((in ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) (powerset A))
% Found ((x0 A) Xphi) as proof of ((in ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) (powerset A))
% Found ((x0 A) Xphi) as proof of ((in ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) (powerset A))
% Found (x10 ((x0 A) Xphi)) as proof of ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A)
% Found ((x1 ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) ((x0 A) Xphi)) as proof of ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A)
% Found (((x A) ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) ((x0 A) Xphi)) as proof of ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A)
% Found (fun (Xphi:(fofType->Prop))=> (((x A) ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) ((x0 A) Xphi))) as proof of ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A)
% Found (fun (A:fofType) (Xphi:(fofType->Prop))=> (((x A) ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) ((x0 A) Xphi))) as proof of (forall (Xphi:(fofType->Prop)), ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A))
% Found (fun (x0:sepInPowerset) (A:fofType) (Xphi:(fofType->Prop))=> (((x A) ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) ((x0 A) Xphi))) as proof of (forall (A:fofType) (Xphi:(fofType->Prop)), ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A))
% Found (fun (x:powersetE1) (x0:sepInPowerset) (A:fofType) (Xphi:(fofType->Prop))=> (((x A) ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) ((x0 A) Xphi))) as proof of (sepInPowerset->(forall (A:fofType) (Xphi:(fofType->Prop)), ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A)))
% Found (fun (x:powersetE1) (x0:sepInPowerset) (A:fofType) (Xphi:(fofType->Prop))=> (((x A) ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) ((x0 A) Xphi))) as proof of (powersetE1->(sepInPowerset->(forall (A:fofType) (Xphi:(fofType->Prop)), ((subset ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) A))))
% Got proof (fun (x:powersetE1) (x0:sepInPowerset) (A:fofType) (Xphi:(fofType->Prop))=> (((x A) ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) ((x0 A) Xphi)))
% Time elapsed = 0.069036s
% node=10 cost=-109.000000 depth=10
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:powersetE1) (x0:sepInPowerset) (A:fofType) (Xphi:(fofType->Prop))=> (((x A) ((dsetconstr A) (fun (Xx:fofType)=> (Xphi Xx)))) ((x0 A) Xphi)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------