TSTP Solution File: SEU572^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU572^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n189.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:30 EDT 2014

% Result   : Theorem 0.41s
% Output   : Proof 0.41s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU572^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n189.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:46:11 CDT 2014
% % CPUTime  : 0.41 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1aaba70>, <kernel.DependentProduct object at 0x1aabd88>) of role type named setadjoin_type
% Using role type
% Declaring setadjoin:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x1c88200>, <kernel.DependentProduct object at 0x1aabd88>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1aab5a8>, <kernel.Sort object at 0x198e368>) of role type named subsetTrans_type
% Using role type
% Declaring subsetTrans:Prop
% FOF formula (((eq Prop) subsetTrans) (forall (A:fofType) (B:fofType) (C:fofType), (((subset A) B)->(((subset B) C)->((subset A) C))))) of role definition named subsetTrans
% A new definition: (((eq Prop) subsetTrans) (forall (A:fofType) (B:fofType) (C:fofType), (((subset A) B)->(((subset B) C)->((subset A) C)))))
% Defined: subsetTrans:=(forall (A:fofType) (B:fofType) (C:fofType), (((subset A) B)->(((subset B) C)->((subset A) C))))
% FOF formula (<kernel.Constant object at 0x198c638>, <kernel.Sort object at 0x198e368>) of role type named setadjoinSub_type
% Using role type
% Declaring setadjoinSub:Prop
% FOF formula (((eq Prop) setadjoinSub) (forall (Xx:fofType) (A:fofType), ((subset A) ((setadjoin Xx) A)))) of role definition named setadjoinSub
% A new definition: (((eq Prop) setadjoinSub) (forall (Xx:fofType) (A:fofType), ((subset A) ((setadjoin Xx) A))))
% Defined: setadjoinSub:=(forall (Xx:fofType) (A:fofType), ((subset A) ((setadjoin Xx) A)))
% FOF formula (subsetTrans->(setadjoinSub->(forall (A:fofType) (Xx:fofType) (B:fofType), (((subset A) B)->((subset A) ((setadjoin Xx) B)))))) of role conjecture named setadjoinSub2
% Conjecture to prove = (subsetTrans->(setadjoinSub->(forall (A:fofType) (Xx:fofType) (B:fofType), (((subset A) B)->((subset A) ((setadjoin Xx) B)))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(subsetTrans->(setadjoinSub->(forall (A:fofType) (Xx:fofType) (B:fofType), (((subset A) B)->((subset A) ((setadjoin Xx) B))))))']
% Parameter fofType:Type.
% Parameter setadjoin:(fofType->(fofType->fofType)).
% Parameter subset:(fofType->(fofType->Prop)).
% Definition subsetTrans:=(forall (A:fofType) (B:fofType) (C:fofType), (((subset A) B)->(((subset B) C)->((subset A) C)))):Prop.
% Definition setadjoinSub:=(forall (Xx:fofType) (A:fofType), ((subset A) ((setadjoin Xx) A))):Prop.
% Trying to prove (subsetTrans->(setadjoinSub->(forall (A:fofType) (Xx:fofType) (B:fofType), (((subset A) B)->((subset A) ((setadjoin Xx) B))))))
% Found x000:=(x00 B):((subset B) ((setadjoin Xx) B))
% Found (x00 B) as proof of ((subset B) ((setadjoin Xx) B))
% Found ((x0 Xx) B) as proof of ((subset B) ((setadjoin Xx) B))
% Found ((x0 Xx) B) as proof of ((subset B) ((setadjoin Xx) B))
% Found (x2000 ((x0 Xx) B)) as proof of ((subset A) ((setadjoin Xx) B))
% Found ((x200 x1) ((x0 Xx) B)) as proof of ((subset A) ((setadjoin Xx) B))
% Found (((x20 B) x1) ((x0 Xx) B)) as proof of ((subset A) ((setadjoin Xx) B))
% Found ((((fun (B0:fofType)=> ((x2 B0) ((setadjoin Xx) B))) B) x1) ((x0 Xx) B)) as proof of ((subset A) ((setadjoin Xx) B))
% Found ((((fun (B0:fofType)=> (((x A) B0) ((setadjoin Xx) B))) B) x1) ((x0 Xx) B)) as proof of ((subset A) ((setadjoin Xx) B))
% Found (fun (x1:((subset A) B))=> ((((fun (B0:fofType)=> (((x A) B0) ((setadjoin Xx) B))) B) x1) ((x0 Xx) B))) as proof of ((subset A) ((setadjoin Xx) B))
% Found (fun (B:fofType) (x1:((subset A) B))=> ((((fun (B0:fofType)=> (((x A) B0) ((setadjoin Xx) B))) B) x1) ((x0 Xx) B))) as proof of (((subset A) B)->((subset A) ((setadjoin Xx) B)))
% Found (fun (Xx:fofType) (B:fofType) (x1:((subset A) B))=> ((((fun (B0:fofType)=> (((x A) B0) ((setadjoin Xx) B))) B) x1) ((x0 Xx) B))) as proof of (forall (B:fofType), (((subset A) B)->((subset A) ((setadjoin Xx) B))))
% Found (fun (A:fofType) (Xx:fofType) (B:fofType) (x1:((subset A) B))=> ((((fun (B0:fofType)=> (((x A) B0) ((setadjoin Xx) B))) B) x1) ((x0 Xx) B))) as proof of (forall (Xx:fofType) (B:fofType), (((subset A) B)->((subset A) ((setadjoin Xx) B))))
% Found (fun (x0:setadjoinSub) (A:fofType) (Xx:fofType) (B:fofType) (x1:((subset A) B))=> ((((fun (B0:fofType)=> (((x A) B0) ((setadjoin Xx) B))) B) x1) ((x0 Xx) B))) as proof of (forall (A:fofType) (Xx:fofType) (B:fofType), (((subset A) B)->((subset A) ((setadjoin Xx) B))))
% Found (fun (x:subsetTrans) (x0:setadjoinSub) (A:fofType) (Xx:fofType) (B:fofType) (x1:((subset A) B))=> ((((fun (B0:fofType)=> (((x A) B0) ((setadjoin Xx) B))) B) x1) ((x0 Xx) B))) as proof of (setadjoinSub->(forall (A:fofType) (Xx:fofType) (B:fofType), (((subset A) B)->((subset A) ((setadjoin Xx) B)))))
% Found (fun (x:subsetTrans) (x0:setadjoinSub) (A:fofType) (Xx:fofType) (B:fofType) (x1:((subset A) B))=> ((((fun (B0:fofType)=> (((x A) B0) ((setadjoin Xx) B))) B) x1) ((x0 Xx) B))) as proof of (subsetTrans->(setadjoinSub->(forall (A:fofType) (Xx:fofType) (B:fofType), (((subset A) B)->((subset A) ((setadjoin Xx) B))))))
% Got proof (fun (x:subsetTrans) (x0:setadjoinSub) (A:fofType) (Xx:fofType) (B:fofType) (x1:((subset A) B))=> ((((fun (B0:fofType)=> (((x A) B0) ((setadjoin Xx) B))) B) x1) ((x0 Xx) B)))
% Time elapsed = 0.090592s
% node=17 cost=288.000000 depth=14
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:subsetTrans) (x0:setadjoinSub) (A:fofType) (Xx:fofType) (B:fofType) (x1:((subset A) B))=> ((((fun (B0:fofType)=> (((x A) B0) ((setadjoin Xx) B))) B) x1) ((x0 Xx) B)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------