TSTP Solution File: SEU536^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU536^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n106.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:24 EDT 2014

% Result   : Unknown 0.64s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU536^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n106.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:33:36 CDT 2014
% % CPUTime  : 0.64 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x19777e8>, <kernel.DependentProduct object at 0x1977cf8>) of role type named in
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (forall (A:fofType) (Xphi:(fofType->Prop)), (((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False)->((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False)))))) of role conjecture named quantDeMorgan1
% Conjecture to prove = (forall (A:fofType) (Xphi:(fofType->Prop)), (((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False)->((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False)))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(forall (A:fofType) (Xphi:(fofType->Prop)), (((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False)->((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Trying to prove (forall (A:fofType) (Xphi:(fofType->Prop)), (((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False)->((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))))
% Found x1:False
% Found (fun (x00:(Xphi x0))=> x1) as proof of False
% Found (fun (x00:(Xphi x0))=> x1) as proof of ((Xphi x0)->False)
% % SZS status GaveUp for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------