TSTP Solution File: SEU511^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU511^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n179.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:20 EDT 2014

% Result   : Theorem 1.37s
% Output   : Proof 1.37s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU511^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n179.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:27:26 CDT 2014
% % CPUTime  : 1.37 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1752b90>, <kernel.DependentProduct object at 0x1752d40>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1b0f8c0>, <kernel.Single object at 0x1752a70>) of role type named emptyset_type
% Using role type
% Declaring emptyset:fofType
% FOF formula (<kernel.Constant object at 0x1752d40>, <kernel.Sort object at 0x161c998>) of role type named emptysetE_type
% Using role type
% Declaring emptysetE:Prop
% FOF formula (((eq Prop) emptysetE) (forall (Xx:fofType), (((in Xx) emptyset)->(forall (Xphi:Prop), Xphi)))) of role definition named emptysetE
% A new definition: (((eq Prop) emptysetE) (forall (Xx:fofType), (((in Xx) emptyset)->(forall (Xphi:Prop), Xphi))))
% Defined: emptysetE:=(forall (Xx:fofType), (((in Xx) emptyset)->(forall (Xphi:Prop), Xphi)))
% FOF formula (<kernel.Constant object at 0x1752cb0>, <kernel.DependentProduct object at 0x1752878>) of role type named nonempty_type
% Using role type
% Declaring nonempty:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) nonempty) (fun (Xx:fofType)=> (not (((eq fofType) Xx) emptyset)))) of role definition named nonempty
% A new definition: (((eq (fofType->Prop)) nonempty) (fun (Xx:fofType)=> (not (((eq fofType) Xx) emptyset))))
% Defined: nonempty:=(fun (Xx:fofType)=> (not (((eq fofType) Xx) emptyset)))
% FOF formula (emptysetE->(forall (A:fofType), (((ex fofType) (fun (Xx:fofType)=> ((in Xx) A)))->(nonempty A)))) of role conjecture named nonemptyI1
% Conjecture to prove = (emptysetE->(forall (A:fofType), (((ex fofType) (fun (Xx:fofType)=> ((in Xx) A)))->(nonempty A)))):Prop
% We need to prove ['(emptysetE->(forall (A:fofType), (((ex fofType) (fun (Xx:fofType)=> ((in Xx) A)))->(nonempty A))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter emptyset:fofType.
% Definition emptysetE:=(forall (Xx:fofType), (((in Xx) emptyset)->(forall (Xphi:Prop), Xphi))):Prop.
% Definition nonempty:=(fun (Xx:fofType)=> (not (((eq fofType) Xx) emptyset))):(fofType->Prop).
% Trying to prove (emptysetE->(forall (A:fofType), (((ex fofType) (fun (Xx:fofType)=> ((in Xx) A)))->(nonempty A))))
% Found x10:=(x1 (in x3)):(((in x3) A)->((in x3) emptyset))
% Found (x1 (in x3)) as proof of (((in x3) A)->((in Xx) emptyset))
% Found (x1 (in x3)) as proof of (((in x3) A)->((in Xx) emptyset))
% Found x2:((in x1) A)
% Instantiate: Xx:=x1:fofType
% Found x2 as proof of ((in Xx) A)
% Found (x30 x2) as proof of ((in Xx) emptyset)
% Found ((x3 (in Xx)) x2) as proof of ((in Xx) emptyset)
% Found ((x3 (in Xx)) x2) as proof of ((in Xx) emptyset)
% Found (x40 ((x3 (in Xx)) x2)) as proof of False
% Found (x40 ((x3 (in Xx)) x2)) as proof of False
% Found ((fun (x5:((in Xx) emptyset))=> ((x4 x5) False)) ((x3 (in Xx)) x2)) as proof of False
% Found ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2)) as proof of False
% Found (fun (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2))) as proof of False
% Found (fun (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2))) as proof of (nonempty A)
% Found (fun (x1:fofType) (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2))) as proof of (((in x1) A)->(nonempty A))
% Found (fun (x1:fofType) (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2))) as proof of (forall (x:fofType), (((in x) A)->(nonempty A)))
% Found (ex_ind00 (fun (x1:fofType) (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2)))) as proof of (nonempty A)
% Found ((ex_ind0 (nonempty A)) (fun (x1:fofType) (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2)))) as proof of (nonempty A)
% Found (((fun (P:Prop) (x1:(forall (x:fofType), (((in x) A)->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((in Xx) A))) P) x1) x0)) (nonempty A)) (fun (x1:fofType) (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2)))) as proof of (nonempty A)
% Found (fun (x0:((ex fofType) (fun (Xx:fofType)=> ((in Xx) A))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((in x) A)->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((in Xx) A))) P) x1) x0)) (nonempty A)) (fun (x1:fofType) (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2))))) as proof of (nonempty A)
% Found (fun (A:fofType) (x0:((ex fofType) (fun (Xx:fofType)=> ((in Xx) A))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((in x) A)->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((in Xx) A))) P) x1) x0)) (nonempty A)) (fun (x1:fofType) (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2))))) as proof of (((ex fofType) (fun (Xx:fofType)=> ((in Xx) A)))->(nonempty A))
% Found (fun (x:emptysetE) (A:fofType) (x0:((ex fofType) (fun (Xx:fofType)=> ((in Xx) A))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((in x) A)->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((in Xx) A))) P) x1) x0)) (nonempty A)) (fun (x1:fofType) (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2))))) as proof of (forall (A:fofType), (((ex fofType) (fun (Xx:fofType)=> ((in Xx) A)))->(nonempty A)))
% Found (fun (x:emptysetE) (A:fofType) (x0:((ex fofType) (fun (Xx:fofType)=> ((in Xx) A))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((in x) A)->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((in Xx) A))) P) x1) x0)) (nonempty A)) (fun (x1:fofType) (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2))))) as proof of (emptysetE->(forall (A:fofType), (((ex fofType) (fun (Xx:fofType)=> ((in Xx) A)))->(nonempty A))))
% Got proof (fun (x:emptysetE) (A:fofType) (x0:((ex fofType) (fun (Xx:fofType)=> ((in Xx) A))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((in x) A)->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((in Xx) A))) P) x1) x0)) (nonempty A)) (fun (x1:fofType) (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2)))))
% Time elapsed = 1.047706s
% node=183 cost=941.000000 depth=18
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:emptysetE) (A:fofType) (x0:((ex fofType) (fun (Xx:fofType)=> ((in Xx) A))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((in x) A)->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((in Xx) A))) P) x1) x0)) (nonempty A)) (fun (x1:fofType) (x2:((in x1) A)) (x3:(((eq fofType) A) emptyset))=> ((fun (x5:((in x1) emptyset))=> (((x x1) x5) False)) ((x3 (in x1)) x2)))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------