TSTP Solution File: SEU493^1 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU493^1 : TPTP v6.1.0. Released v3.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n185.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:17 EDT 2014

% Result   : Theorem 17.65s
% Output   : Proof 17.65s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU493^1 : TPTP v6.1.0. Released v3.6.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n185.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:22:46 CDT 2014
% % CPUTime  : 17.65 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/SET009^0.ax, trying next directory
% FOF formula (<kernel.Constant object at 0x1618290>, <kernel.DependentProduct object at 0x1436cf8>) of role type named subrel_type
% Using role type
% Declaring subrel:((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop))) subrel) (fun (R:(fofType->(fofType->Prop))) (S:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->((S X) Y))))) of role definition named subrel
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop))) subrel) (fun (R:(fofType->(fofType->Prop))) (S:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->((S X) Y)))))
% Defined: subrel:=(fun (R:(fofType->(fofType->Prop))) (S:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->((S X) Y))))
% FOF formula (<kernel.Constant object at 0x1867170>, <kernel.DependentProduct object at 0x1436cf8>) of role type named inv_type
% Using role type
% Declaring inv:((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) inv) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((R Y) X))) of role definition named inverse
% A new definition: (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) inv) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((R Y) X)))
% Defined: inv:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((R Y) X))
% FOF formula (<kernel.Constant object at 0x1436cf8>, <kernel.DependentProduct object at 0x1436a28>) of role type named idem_type
% Using role type
% Declaring idem:(((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop)
% FOF formula (((eq (((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop)) idem) (fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))), (((eq (fofType->(fofType->Prop))) (F (F R))) (F R))))) of role definition named idempotent
% A new definition: (((eq (((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop)) idem) (fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))), (((eq (fofType->(fofType->Prop))) (F (F R))) (F R)))))
% Defined: idem:=(fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))), (((eq (fofType->(fofType->Prop))) (F (F R))) (F R))))
% FOF formula (<kernel.Constant object at 0x1436d88>, <kernel.DependentProduct object at 0x1436ab8>) of role type named infl_type
% Using role type
% Declaring infl:(((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop)
% FOF formula (((eq (((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop)) infl) (fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))), ((subrel R) (F R))))) of role definition named inflationary
% A new definition: (((eq (((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop)) infl) (fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))), ((subrel R) (F R)))))
% Defined: infl:=(fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))), ((subrel R) (F R))))
% FOF formula (<kernel.Constant object at 0x1436cf8>, <kernel.DependentProduct object at 0x1436488>) of role type named mono_type
% Using role type
% Declaring mono:(((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop)
% FOF formula (((eq (((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop)) mono) (fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))) (S:(fofType->(fofType->Prop))), (((subrel R) S)->((subrel (F R)) (F S)))))) of role definition named monotonic
% A new definition: (((eq (((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop)) mono) (fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))) (S:(fofType->(fofType->Prop))), (((subrel R) S)->((subrel (F R)) (F S))))))
% Defined: mono:=(fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))) (S:(fofType->(fofType->Prop))), (((subrel R) S)->((subrel (F R)) (F S)))))
% FOF formula (<kernel.Constant object at 0x1436cf8>, <kernel.DependentProduct object at 0x14365f0>) of role type named refl_type
% Using role type
% Declaring refl:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) refl) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), ((R X) X)))) of role definition named reflexive
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) refl) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), ((R X) X))))
% Defined: refl:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), ((R X) X)))
% FOF formula (<kernel.Constant object at 0x1436b48>, <kernel.DependentProduct object at 0x1436f80>) of role type named irrefl_type
% Using role type
% Declaring irrefl:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) irrefl) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), (((R X) X)->False)))) of role definition named irreflexive
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) irrefl) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), (((R X) X)->False))))
% Defined: irrefl:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), (((R X) X)->False)))
% FOF formula (<kernel.Constant object at 0x1436cf8>, <kernel.DependentProduct object at 0x1436f80>) of role type named rc_type
% Using role type
% Declaring rc:((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) rc) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((or (((eq fofType) X) Y)) ((R X) Y)))) of role definition named reflexive_closure
% A new definition: (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) rc) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((or (((eq fofType) X) Y)) ((R X) Y))))
% Defined: rc:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((or (((eq fofType) X) Y)) ((R X) Y)))
% FOF formula (<kernel.Constant object at 0x1436cf8>, <kernel.DependentProduct object at 0x1619170>) of role type named symm_type
% Using role type
% Declaring symm:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) symm) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->((R Y) X))))) of role definition named symmetric
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) symm) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->((R Y) X)))))
% Defined: symm:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->((R Y) X))))
% FOF formula (<kernel.Constant object at 0x16190e0>, <kernel.DependentProduct object at 0x16195f0>) of role type named antisymm_type
% Using role type
% Declaring antisymm:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) antisymm) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((and ((R X) Y)) ((R Y) X))->(((eq fofType) X) Y))))) of role definition named antisymmetric
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) antisymm) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((and ((R X) Y)) ((R Y) X))->(((eq fofType) X) Y)))))
% Defined: antisymm:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((and ((R X) Y)) ((R Y) X))->(((eq fofType) X) Y))))
% FOF formula (<kernel.Constant object at 0x1619170>, <kernel.DependentProduct object at 0x142c680>) of role type named asymm_type
% Using role type
% Declaring asymm:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) asymm) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->(((R Y) X)->False))))) of role definition named asymmetric
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) asymm) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->(((R Y) X)->False)))))
% Defined: asymm:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->(((R Y) X)->False))))
% FOF formula (<kernel.Constant object at 0x16190e0>, <kernel.DependentProduct object at 0x142c248>) of role type named sc_type
% Using role type
% Declaring sc:((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) sc) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((or ((R Y) X)) ((R X) Y)))) of role definition named symmetric_closure
% A new definition: (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) sc) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((or ((R Y) X)) ((R X) Y))))
% Defined: sc:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((or ((R Y) X)) ((R X) Y)))
% FOF formula (<kernel.Constant object at 0x142c7e8>, <kernel.DependentProduct object at 0x142c488>) of role type named trans_type
% Using role type
% Declaring trans:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) trans) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Y)) ((R Y) Z))->((R X) Z))))) of role definition named transitive
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) trans) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Y)) ((R Y) Z))->((R X) Z)))))
% Defined: trans:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Y)) ((R Y) Z))->((R X) Z))))
% FOF formula (<kernel.Constant object at 0x142c518>, <kernel.DependentProduct object at 0x142c908>) of role type named tc_type
% Using role type
% Declaring tc:((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) tc) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> (forall (S:(fofType->(fofType->Prop))), (((and (trans S)) ((subrel R) S))->((S X) Y))))) of role definition named transitive_closure
% A new definition: (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) tc) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> (forall (S:(fofType->(fofType->Prop))), (((and (trans S)) ((subrel R) S))->((S X) Y)))))
% Defined: tc:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> (forall (S:(fofType->(fofType->Prop))), (((and (trans S)) ((subrel R) S))->((S X) Y))))
% FOF formula (<kernel.Constant object at 0x142c710>, <kernel.DependentProduct object at 0x142c440>) of role type named trc_type
% Using role type
% Declaring trc:((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) trc) (fun (R:(fofType->(fofType->Prop)))=> (rc (tc R)))) of role definition named transitive_reflexive_closure
% A new definition: (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) trc) (fun (R:(fofType->(fofType->Prop)))=> (rc (tc R))))
% Defined: trc:=(fun (R:(fofType->(fofType->Prop)))=> (rc (tc R)))
% FOF formula (<kernel.Constant object at 0x142c0e0>, <kernel.DependentProduct object at 0x142c9e0>) of role type named trsc_type
% Using role type
% Declaring trsc:((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) trsc) (fun (R:(fofType->(fofType->Prop)))=> (sc (rc (tc R))))) of role definition named transitive_reflexive_symmetric_closure
% A new definition: (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) trsc) (fun (R:(fofType->(fofType->Prop)))=> (sc (rc (tc R)))))
% Defined: trsc:=(fun (R:(fofType->(fofType->Prop)))=> (sc (rc (tc R))))
% FOF formula (<kernel.Constant object at 0x142c0e0>, <kernel.DependentProduct object at 0x142c5f0>) of role type named po_type
% Using role type
% Declaring po:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) po) (fun (R:(fofType->(fofType->Prop)))=> ((and ((and (refl R)) (antisymm R))) (trans R)))) of role definition named partial_order
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) po) (fun (R:(fofType->(fofType->Prop)))=> ((and ((and (refl R)) (antisymm R))) (trans R))))
% Defined: po:=(fun (R:(fofType->(fofType->Prop)))=> ((and ((and (refl R)) (antisymm R))) (trans R)))
% FOF formula (<kernel.Constant object at 0x142c200>, <kernel.DependentProduct object at 0x142c5a8>) of role type named so_type
% Using role type
% Declaring so:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) so) (fun (R:(fofType->(fofType->Prop)))=> ((and (asymm R)) (trans R)))) of role definition named strict_order
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) so) (fun (R:(fofType->(fofType->Prop)))=> ((and (asymm R)) (trans R))))
% Defined: so:=(fun (R:(fofType->(fofType->Prop)))=> ((and (asymm R)) (trans R)))
% FOF formula (<kernel.Constant object at 0x142c5f0>, <kernel.DependentProduct object at 0x142c4d0>) of role type named total_type
% Using role type
% Declaring total:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) total) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), ((or ((or (((eq fofType) X) Y)) ((R X) Y))) ((R Y) X))))) of role definition named total
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) total) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), ((or ((or (((eq fofType) X) Y)) ((R X) Y))) ((R Y) X)))))
% Defined: total:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), ((or ((or (((eq fofType) X) Y)) ((R X) Y))) ((R Y) X))))
% FOF formula (<kernel.Constant object at 0x142c4d0>, <kernel.DependentProduct object at 0x142cb48>) of role type named term_type
% Using role type
% Declaring term:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) term) (fun (R:(fofType->(fofType->Prop)))=> (forall (A:(fofType->Prop)), (((ex fofType) (fun (X:fofType)=> (A X)))->((ex fofType) (fun (X:fofType)=> ((and (A X)) (forall (Y:fofType), ((A Y)->(((R X) Y)->False)))))))))) of role definition named terminating
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) term) (fun (R:(fofType->(fofType->Prop)))=> (forall (A:(fofType->Prop)), (((ex fofType) (fun (X:fofType)=> (A X)))->((ex fofType) (fun (X:fofType)=> ((and (A X)) (forall (Y:fofType), ((A Y)->(((R X) Y)->False))))))))))
% Defined: term:=(fun (R:(fofType->(fofType->Prop)))=> (forall (A:(fofType->Prop)), (((ex fofType) (fun (X:fofType)=> (A X)))->((ex fofType) (fun (X:fofType)=> ((and (A X)) (forall (Y:fofType), ((A Y)->(((R X) Y)->False)))))))))
% FOF formula (<kernel.Constant object at 0x142cbd8>, <kernel.DependentProduct object at 0x142ccf8>) of role type named ind_type
% Using role type
% Declaring ind:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) ind) (fun (R:(fofType->(fofType->Prop)))=> (forall (P:(fofType->Prop)), ((forall (X:fofType), ((forall (Y:fofType), ((((tc R) X) Y)->(P Y)))->(P X)))->(forall (X:fofType), (P X)))))) of role definition named satisfying_the_induction_principle
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) ind) (fun (R:(fofType->(fofType->Prop)))=> (forall (P:(fofType->Prop)), ((forall (X:fofType), ((forall (Y:fofType), ((((tc R) X) Y)->(P Y)))->(P X)))->(forall (X:fofType), (P X))))))
% Defined: ind:=(fun (R:(fofType->(fofType->Prop)))=> (forall (P:(fofType->Prop)), ((forall (X:fofType), ((forall (Y:fofType), ((((tc R) X) Y)->(P Y)))->(P X)))->(forall (X:fofType), (P X)))))
% FOF formula (<kernel.Constant object at 0x142c1b8>, <kernel.DependentProduct object at 0x142cbd8>) of role type named innf_type
% Using role type
% Declaring innf:((fofType->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq ((fofType->(fofType->Prop))->(fofType->Prop))) innf) (fun (R:(fofType->(fofType->Prop))) (X:fofType)=> (((ex fofType) (fun (Y:fofType)=> ((R X) Y)))->False))) of role definition named in_normal_form
% A new definition: (((eq ((fofType->(fofType->Prop))->(fofType->Prop))) innf) (fun (R:(fofType->(fofType->Prop))) (X:fofType)=> (((ex fofType) (fun (Y:fofType)=> ((R X) Y)))->False)))
% Defined: innf:=(fun (R:(fofType->(fofType->Prop))) (X:fofType)=> (((ex fofType) (fun (Y:fofType)=> ((R X) Y)))->False))
% FOF formula (<kernel.Constant object at 0x142ccf8>, <kernel.DependentProduct object at 0x142c0e0>) of role type named nfof_type
% Using role type
% Declaring nfof:((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) nfof) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((and (((trc R) Y) X)) ((innf R) X)))) of role definition named normal_form_of
% A new definition: (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) nfof) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((and (((trc R) Y) X)) ((innf R) X))))
% Defined: nfof:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((and (((trc R) Y) X)) ((innf R) X)))
% FOF formula (<kernel.Constant object at 0x142c1b8>, <kernel.DependentProduct object at 0x142cd88>) of role type named norm_type
% Using role type
% Declaring norm:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) norm) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), ((ex fofType) (fun (Y:fofType)=> (((nfof R) Y) X)))))) of role definition named normalizing
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) norm) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), ((ex fofType) (fun (Y:fofType)=> (((nfof R) Y) X))))))
% Defined: norm:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), ((ex fofType) (fun (Y:fofType)=> (((nfof R) Y) X)))))
% FOF formula (<kernel.Constant object at 0x142c1b8>, <kernel.DependentProduct object at 0x142cf80>) of role type named join_type
% Using role type
% Declaring join:((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) join) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((ex fofType) (fun (Z:fofType)=> ((and (((trc R) X) Z)) (((trc R) Y) Z)))))) of role definition named joinable
% A new definition: (((eq ((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))) join) (fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((ex fofType) (fun (Z:fofType)=> ((and (((trc R) X) Z)) (((trc R) Y) Z))))))
% Defined: join:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((ex fofType) (fun (Z:fofType)=> ((and (((trc R) X) Z)) (((trc R) Y) Z)))))
% FOF formula (<kernel.Constant object at 0x142c680>, <kernel.DependentProduct object at 0x16063f8>) of role type named lconfl_type
% Using role type
% Declaring lconfl:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) lconfl) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Z)) ((R X) Y))->(((join R) Z) Y))))) of role definition named locally_confluent
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) lconfl) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Z)) ((R X) Y))->(((join R) Z) Y)))))
% Defined: lconfl:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Z)) ((R X) Y))->(((join R) Z) Y))))
% FOF formula (<kernel.Constant object at 0x142c1b8>, <kernel.DependentProduct object at 0x1606050>) of role type named sconfl_type
% Using role type
% Declaring sconfl:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) sconfl) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Z)) (((trc R) X) Y))->(((join R) Z) Y))))) of role definition named semi_confluent
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) sconfl) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Z)) (((trc R) X) Y))->(((join R) Z) Y)))))
% Defined: sconfl:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Z)) (((trc R) X) Y))->(((join R) Z) Y))))
% FOF formula (<kernel.Constant object at 0x16063f8>, <kernel.DependentProduct object at 0x1606440>) of role type named confl_type
% Using role type
% Declaring confl:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) confl) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and (((trc R) X) Z)) (((trc R) X) Y))->(((join R) Z) Y))))) of role definition named confluent
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) confl) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and (((trc R) X) Z)) (((trc R) X) Y))->(((join R) Z) Y)))))
% Defined: confl:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and (((trc R) X) Z)) (((trc R) X) Y))->(((join R) Z) Y))))
% FOF formula (<kernel.Constant object at 0x1606050>, <kernel.DependentProduct object at 0x1606320>) of role type named cr_type
% Using role type
% Declaring cr:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) cr) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), ((((trsc R) X) Y)->(((join R) X) Y))))) of role definition named church_rosser
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) cr) (fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), ((((trsc R) X) Y)->(((join R) X) Y)))))
% Defined: cr:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), ((((trsc R) X) Y)->(((join R) X) Y))))
% FOF formula (forall (R:(fofType->(fofType->Prop))), ((po R)->(po (inv R)))) of role conjecture named inverse_of_partial_order_is_partial_order
% Conjecture to prove = (forall (R:(fofType->(fofType->Prop))), ((po R)->(po (inv R)))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(forall (R:(fofType->(fofType->Prop))), ((po R)->(po (inv R))))']
% Parameter fofType:Type.
% Definition subrel:=(fun (R:(fofType->(fofType->Prop))) (S:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->((S X) Y)))):((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop)).
% Definition inv:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((R Y) X)):((fofType->(fofType->Prop))->(fofType->(fofType->Prop))).
% Definition idem:=(fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))), (((eq (fofType->(fofType->Prop))) (F (F R))) (F R)))):(((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop).
% Definition infl:=(fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))), ((subrel R) (F R)))):(((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop).
% Definition mono:=(fun (F:((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))=> (forall (R:(fofType->(fofType->Prop))) (S:(fofType->(fofType->Prop))), (((subrel R) S)->((subrel (F R)) (F S))))):(((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))->Prop).
% Definition refl:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), ((R X) X))):((fofType->(fofType->Prop))->Prop).
% Definition irrefl:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), (((R X) X)->False))):((fofType->(fofType->Prop))->Prop).
% Definition rc:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((or (((eq fofType) X) Y)) ((R X) Y))):((fofType->(fofType->Prop))->(fofType->(fofType->Prop))).
% Definition symm:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->((R Y) X)))):((fofType->(fofType->Prop))->Prop).
% Definition antisymm:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((and ((R X) Y)) ((R Y) X))->(((eq fofType) X) Y)))):((fofType->(fofType->Prop))->Prop).
% Definition asymm:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R X) Y)->(((R Y) X)->False)))):((fofType->(fofType->Prop))->Prop).
% Definition sc:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((or ((R Y) X)) ((R X) Y))):((fofType->(fofType->Prop))->(fofType->(fofType->Prop))).
% Definition trans:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Y)) ((R Y) Z))->((R X) Z)))):((fofType->(fofType->Prop))->Prop).
% Definition tc:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> (forall (S:(fofType->(fofType->Prop))), (((and (trans S)) ((subrel R) S))->((S X) Y)))):((fofType->(fofType->Prop))->(fofType->(fofType->Prop))).
% Definition trc:=(fun (R:(fofType->(fofType->Prop)))=> (rc (tc R))):((fofType->(fofType->Prop))->(fofType->(fofType->Prop))).
% Definition trsc:=(fun (R:(fofType->(fofType->Prop)))=> (sc (rc (tc R)))):((fofType->(fofType->Prop))->(fofType->(fofType->Prop))).
% Definition po:=(fun (R:(fofType->(fofType->Prop)))=> ((and ((and (refl R)) (antisymm R))) (trans R))):((fofType->(fofType->Prop))->Prop).
% Definition so:=(fun (R:(fofType->(fofType->Prop)))=> ((and (asymm R)) (trans R))):((fofType->(fofType->Prop))->Prop).
% Definition total:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), ((or ((or (((eq fofType) X) Y)) ((R X) Y))) ((R Y) X)))):((fofType->(fofType->Prop))->Prop).
% Definition term:=(fun (R:(fofType->(fofType->Prop)))=> (forall (A:(fofType->Prop)), (((ex fofType) (fun (X:fofType)=> (A X)))->((ex fofType) (fun (X:fofType)=> ((and (A X)) (forall (Y:fofType), ((A Y)->(((R X) Y)->False))))))))):((fofType->(fofType->Prop))->Prop).
% Definition ind:=(fun (R:(fofType->(fofType->Prop)))=> (forall (P:(fofType->Prop)), ((forall (X:fofType), ((forall (Y:fofType), ((((tc R) X) Y)->(P Y)))->(P X)))->(forall (X:fofType), (P X))))):((fofType->(fofType->Prop))->Prop).
% Definition innf:=(fun (R:(fofType->(fofType->Prop))) (X:fofType)=> (((ex fofType) (fun (Y:fofType)=> ((R X) Y)))->False)):((fofType->(fofType->Prop))->(fofType->Prop)).
% Definition nfof:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((and (((trc R) Y) X)) ((innf R) X))):((fofType->(fofType->Prop))->(fofType->(fofType->Prop))).
% Definition norm:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType), ((ex fofType) (fun (Y:fofType)=> (((nfof R) Y) X))))):((fofType->(fofType->Prop))->Prop).
% Definition join:=(fun (R:(fofType->(fofType->Prop))) (X:fofType) (Y:fofType)=> ((ex fofType) (fun (Z:fofType)=> ((and (((trc R) X) Z)) (((trc R) Y) Z))))):((fofType->(fofType->Prop))->(fofType->(fofType->Prop))).
% Definition lconfl:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Z)) ((R X) Y))->(((join R) Z) Y)))):((fofType->(fofType->Prop))->Prop).
% Definition sconfl:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and ((R X) Z)) (((trc R) X) Y))->(((join R) Z) Y)))):((fofType->(fofType->Prop))->Prop).
% Definition confl:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType) (Z:fofType), (((and (((trc R) X) Z)) (((trc R) X) Y))->(((join R) Z) Y)))):((fofType->(fofType->Prop))->Prop).
% Definition cr:=(fun (R:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), ((((trsc R) X) Y)->(((join R) X) Y)))):((fofType->(fofType->Prop))->Prop).
% Trying to prove (forall (R:(fofType->(fofType->Prop))), ((po R)->(po (inv R))))
% Found x2:(refl R)
% Found x2 as proof of (refl (inv R))
% Found x2:(refl R)
% Found x2 as proof of (refl (inv R))
% Found x2:(refl R)
% Found (fun (x3:(antisymm R))=> x2) as proof of (refl (inv R))
% Found (fun (x2:(refl R)) (x3:(antisymm R))=> x2) as proof of ((antisymm R)->(refl (inv R)))
% Found (fun (x2:(refl R)) (x3:(antisymm R))=> x2) as proof of ((refl R)->((antisymm R)->(refl (inv R))))
% Found (and_rect10 (fun (x2:(refl R)) (x3:(antisymm R))=> x2)) as proof of (refl (inv R))
% Found ((and_rect1 (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2)) as proof of (refl (inv R))
% Found (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2)) as proof of (refl (inv R))
% Found (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2)) as proof of (refl (inv R))
% Found x60:(((inv R) Y) Z)
% Found (fun (x60:(((inv R) Y) Z))=> x60) as proof of (((inv R) Y) Z)
% Found (fun (x60:(((inv R) Y) Z))=> x60) as proof of (P Y)
% Found x50:(P X)
% Found (fun (x50:(P X))=> x50) as proof of (P X)
% Found (fun (x50:(P X))=> x50) as proof of (P0 X)
% Found x20:=(x2 Y0):((R Y0) Y0)
% Found (x2 Y0) as proof of ((R Y0) X)
% Found (x2 Y0) as proof of ((R Y0) X)
% Found (x2 Y0) as proof of ((R Y0) X)
% Found x20:=(x2 Z):((R Z) Z)
% Found (x2 Z) as proof of ((R Z) Y0)
% Found (x2 Z) as proof of ((R Z) Y0)
% Found (x2 Z) as proof of ((R Z) Y0)
% Found x50:(P X)
% Found (fun (x50:(P X))=> x50) as proof of (P X)
% Found (fun (x50:(P X))=> x50) as proof of (P0 X)
% Found x50:(P X)
% Found (fun (x50:(P X))=> x50) as proof of (P X)
% Found (fun (x50:(P X))=> x50) as proof of (P0 X)
% Found x4:(((inv R) Y) Z)
% Instantiate: Y0:=Y:fofType
% Found x4 as proof of ((R Z) Y0)
% Found x3:(((inv R) X) Y)
% Instantiate: Y0:=Y:fofType
% Found x3 as proof of ((R Y0) X)
% Found ((conj10 x4) x3) as proof of ((and ((R Z) Y0)) ((R Y0) X))
% Found (((conj1 ((R Y0) X)) x4) x3) as proof of ((and ((R Z) Y0)) ((R Y0) X))
% Found ((((conj ((R Z) Y0)) ((R Y0) X)) x4) x3) as proof of ((and ((R Z) Y0)) ((R Y0) X))
% Found ((((conj ((R Z) Y0)) ((R Y0) X)) x4) x3) as proof of ((and ((R Z) Y0)) ((R Y0) X))
% Found (x1000 ((((conj ((R Z) Y0)) ((R Y0) X)) x4) x3)) as proof of (((inv R) X) Z)
% Found ((x100 Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)) as proof of (((inv R) X) Z)
% Found (((fun (Y0:fofType)=> ((x10 Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)) as proof of (((inv R) X) Z)
% Found (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)) as proof of (((inv R) X) Z)
% Found (fun (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))) as proof of (((inv R) X) Z)
% Found (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))) as proof of ((((inv R) Y) Z)->(((inv R) X) Z))
% Found (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))) as proof of ((((inv R) X) Y)->((((inv R) Y) Z)->(((inv R) X) Z)))
% Found (and_rect10 (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)))) as proof of (((inv R) X) Z)
% Found ((and_rect1 (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)))) as proof of (((inv R) X) Z)
% Found (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)))) as proof of (((inv R) X) Z)
% Found (fun (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))))) as proof of (((inv R) X) Z)
% Found (fun (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))))) as proof of (((and (((inv R) X) Y)) (((inv R) Y) Z))->(((inv R) X) Z))
% Found (fun (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))))) as proof of (forall (Z:fofType), (((and (((inv R) X) Y)) (((inv R) Y) Z))->(((inv R) X) Z)))
% Found (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))))) as proof of (forall (Y:fofType) (Z:fofType), (((and (((inv R) X) Y)) (((inv R) Y) Z))->(((inv R) X) Z)))
% Found (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))))) as proof of (trans (inv R))
% Found x4000:=(x400 x2):(((eq fofType) Y) X)
% Found (x400 x2) as proof of (((eq fofType) Y) X)
% Found ((x40 X) x2) as proof of (((eq fofType) Y) X)
% Found (((x4 Y) X) x2) as proof of (((eq fofType) Y) X)
% Found (((x4 Y) X) x2) as proof of (((eq fofType) Y) X)
% Found (eq_sym000 (((x4 Y) X) x2)) as proof of (((eq fofType) X) Y)
% Found ((eq_sym00 X) (((x4 Y) X) x2)) as proof of (((eq fofType) X) Y)
% Found (((eq_sym0 Y) X) (((x4 Y) X) x2)) as proof of (((eq fofType) X) Y)
% Found ((((eq_sym fofType) Y) X) (((x4 Y) X) x2)) as proof of (((eq fofType) X) Y)
% Found (fun (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))) as proof of (((eq fofType) X) Y)
% Found (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))) as proof of ((antisymm R)->(((eq fofType) X) Y))
% Found (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))) as proof of ((refl R)->((antisymm R)->(((eq fofType) X) Y)))
% Found (and_rect10 (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2)))) as proof of (((eq fofType) X) Y)
% Found ((and_rect1 (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2)))) as proof of (((eq fofType) X) Y)
% Found (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2)))) as proof of (((eq fofType) X) Y)
% Found (fun (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))) as proof of (((eq fofType) X) Y)
% Found (fun (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))) as proof of (((and (((inv R) X) Y)) (((inv R) Y) X))->(((eq fofType) X) Y))
% Found (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))) as proof of (forall (Y:fofType), (((and (((inv R) X) Y)) (((inv R) Y) X))->(((eq fofType) X) Y)))
% Found (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))) as proof of (antisymm (inv R))
% Found ((conj10 (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2)))))) as proof of ((and (refl (inv R))) (antisymm (inv R)))
% Found (((conj1 (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2)))))) as proof of ((and (refl (inv R))) (antisymm (inv R)))
% Found ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2)))))) as proof of ((and (refl (inv R))) (antisymm (inv R)))
% Found ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2)))))) as proof of ((and (refl (inv R))) (antisymm (inv R)))
% Found ((conj00 ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)))))) as proof of (po (inv R))
% Found (((conj0 (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)))))) as proof of (po (inv R))
% Found ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)))))) as proof of (po (inv R))
% Found (fun (x1:(trans R))=> ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))))))) as proof of (po (inv R))
% Found (fun (x0:((and (refl R)) (antisymm R))) (x1:(trans R))=> ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))))))) as proof of ((trans R)->(po (inv R)))
% Found (fun (x0:((and (refl R)) (antisymm R))) (x1:(trans R))=> ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))))))) as proof of (((and (refl R)) (antisymm R))->((trans R)->(po (inv R))))
% Found (and_rect00 (fun (x0:((and (refl R)) (antisymm R))) (x1:(trans R))=> ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)))))))) as proof of (po (inv R))
% Found ((and_rect0 (po (inv R))) (fun (x0:((and (refl R)) (antisymm R))) (x1:(trans R))=> ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)))))))) as proof of (po (inv R))
% Found (((fun (P:Type) (x0:(((and (refl R)) (antisymm R))->((trans R)->P)))=> (((((and_rect ((and (refl R)) (antisymm R))) (trans R)) P) x0) x)) (po (inv R))) (fun (x0:((and (refl R)) (antisymm R))) (x1:(trans R))=> ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)))))))) as proof of (po (inv R))
% Found (fun (x:(po R))=> (((fun (P:Type) (x0:(((and (refl R)) (antisymm R))->((trans R)->P)))=> (((((and_rect ((and (refl R)) (antisymm R))) (trans R)) P) x0) x)) (po (inv R))) (fun (x0:((and (refl R)) (antisymm R))) (x1:(trans R))=> ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))))))))) as proof of (po (inv R))
% Found (fun (R:(fofType->(fofType->Prop))) (x:(po R))=> (((fun (P:Type) (x0:(((and (refl R)) (antisymm R))->((trans R)->P)))=> (((((and_rect ((and (refl R)) (antisymm R))) (trans R)) P) x0) x)) (po (inv R))) (fun (x0:((and (refl R)) (antisymm R))) (x1:(trans R))=> ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))))))))) as proof of ((po R)->(po (inv R)))
% Found (fun (R:(fofType->(fofType->Prop))) (x:(po R))=> (((fun (P:Type) (x0:(((and (refl R)) (antisymm R))->((trans R)->P)))=> (((((and_rect ((and (refl R)) (antisymm R))) (trans R)) P) x0) x)) (po (inv R))) (fun (x0:((and (refl R)) (antisymm R))) (x1:(trans R))=> ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3))))))))) as proof of (forall (R:(fofType->(fofType->Prop))), ((po R)->(po (inv R))))
% Got proof (fun (R:(fofType->(fofType->Prop))) (x:(po R))=> (((fun (P:Type) (x0:(((and (refl R)) (antisymm R))->((trans R)->P)))=> (((((and_rect ((and (refl R)) (antisymm R))) (trans R)) P) x0) x)) (po (inv R))) (fun (x0:((and (refl R)) (antisymm R))) (x1:(trans R))=> ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)))))))))
% Time elapsed = 17.097581s
% node=1756 cost=1096.000000 depth=33
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (R:(fofType->(fofType->Prop))) (x:(po R))=> (((fun (P:Type) (x0:(((and (refl R)) (antisymm R))->((trans R)->P)))=> (((((and_rect ((and (refl R)) (antisymm R))) (trans R)) P) x0) x)) (po (inv R))) (fun (x0:((and (refl R)) (antisymm R))) (x1:(trans R))=> ((((conj ((and (refl (inv R))) (antisymm (inv R)))) (trans (inv R))) ((((conj (refl (inv R))) (antisymm (inv R))) (((fun (P:Type) (x2:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x2) x0)) (refl (inv R))) (fun (x2:(refl R)) (x3:(antisymm R))=> x2))) (fun (X:fofType) (Y:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) X)))=> (((fun (P:Type) (x3:((refl R)->((antisymm R)->P)))=> (((((and_rect (refl R)) (antisymm R)) P) x3) x0)) (((eq fofType) X) Y)) (fun (x3:(refl R)) (x4:(antisymm R))=> ((((eq_sym fofType) Y) X) (((x4 Y) X) x2))))))) (fun (X:fofType) (Y:fofType) (Z:fofType) (x2:((and (((inv R) X) Y)) (((inv R) Y) Z)))=> (((fun (P:Type) (x3:((((inv R) X) Y)->((((inv R) Y) Z)->P)))=> (((((and_rect (((inv R) X) Y)) (((inv R) Y) Z)) P) x3) x2)) (((inv R) X) Z)) (fun (x3:(((inv R) X) Y)) (x4:(((inv R) Y) Z))=> (((fun (Y0:fofType)=> (((x1 Z) Y0) X)) Y) ((((conj ((R Z) Y)) ((R Y) X)) x4) x3)))))))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------