TSTP Solution File: SEU420+2 by Enigma---0.5.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Enigma---0.5.1
% Problem  : SEU420+2 : TPTP v8.1.0. Released v3.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : enigmatic-eprover.py %s %d 1

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 08:42:12 EDT 2022

% Result   : Theorem 17.03s 4.70s
% Output   : CNFRefutation 17.03s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    8
%            Number of leaves      :   10
% Syntax   : Number of formulae    :   43 (  24 unt;   0 def)
%            Number of atoms       :   81 (  19 equ)
%            Maximal formula atoms :    4 (   1 avg)
%            Number of connectives :   68 (  30   ~;  23   |;   4   &)
%                                         (   1 <=>;  10  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    4 (   2 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   4 con; 0-2 aty)
%            Number of variables   :   74 (   2 sgn  44   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(t13_relset_2,conjecture,
    ! [X1,X2] :
      ( v1_relat_1(X2)
     => ! [X3] :
          ( v1_relat_1(X3)
         => r1_tarski(k9_relat_1(k3_xboole_0(X2,X3),k3_pua2mss1(X1)),k3_xboole_0(k9_relat_1(X2,k3_pua2mss1(X1)),k9_relat_1(X3,k3_pua2mss1(X1)))) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t13_relset_2) ).

fof(t48_xboole_1,axiom,
    ! [X1,X2] : k4_xboole_0(X1,k4_xboole_0(X1,X2)) = k3_xboole_0(X1,X2),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET007/SET007+4.ax',t48_xboole_1) ).

fof(t19_xboole_1,axiom,
    ! [X1,X2,X3] :
      ( ( r1_tarski(X1,X2)
        & r1_tarski(X1,X3) )
     => r1_tarski(X1,k3_xboole_0(X2,X3)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET007/SET007+4.ax',t19_xboole_1) ).

fof(t157_relat_1,axiom,
    ! [X1,X2] :
      ( v1_relat_1(X2)
     => ! [X3] :
          ( v1_relat_1(X3)
         => ( r1_tarski(X2,X3)
           => r1_tarski(k9_relat_1(X2,X1),k9_relat_1(X3,X1)) ) ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET007/SET007+10.ax',t157_relat_1) ).

fof(t3_relat_1,axiom,
    ! [X1,X2] :
      ( v1_relat_1(X2)
     => ( r1_tarski(X1,X2)
       => v1_relat_1(X1) ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET007/SET007+10.ax',t3_relat_1) ).

fof(t2_boole,axiom,
    ! [X1] : k3_xboole_0(X1,k1_xboole_0) = k1_xboole_0,
    file('/export/starexec/sandbox2/benchmark/Axioms/SET007/SET007+3.ax',t2_boole) ).

fof(t36_xboole_1,axiom,
    ! [X1,X2] : r1_tarski(k4_xboole_0(X1,X2),X1),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET007/SET007+4.ax',t36_xboole_1) ).

fof(t49_xboole_1,axiom,
    ! [X1,X2,X3] : k3_xboole_0(X1,k4_xboole_0(X2,X3)) = k4_xboole_0(k3_xboole_0(X1,X2),X3),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET007/SET007+4.ax',t49_xboole_1) ).

fof(t3_boole,axiom,
    ! [X1] : k4_xboole_0(X1,k1_xboole_0) = X1,
    file('/export/starexec/sandbox2/benchmark/Axioms/SET007/SET007+3.ax',t3_boole) ).

fof(t37_xboole_1,axiom,
    ! [X1,X2] :
      ( k4_xboole_0(X1,X2) = k1_xboole_0
    <=> r1_tarski(X1,X2) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET007/SET007+4.ax',t37_xboole_1) ).

fof(c_0_10,negated_conjecture,
    ~ ! [X1,X2] :
        ( v1_relat_1(X2)
       => ! [X3] :
            ( v1_relat_1(X3)
           => r1_tarski(k9_relat_1(k3_xboole_0(X2,X3),k3_pua2mss1(X1)),k3_xboole_0(k9_relat_1(X2,k3_pua2mss1(X1)),k9_relat_1(X3,k3_pua2mss1(X1)))) ) ),
    inference(assume_negation,[status(cth)],[t13_relset_2]) ).

fof(c_0_11,negated_conjecture,
    ( v1_relat_1(esk2_0)
    & v1_relat_1(esk3_0)
    & ~ r1_tarski(k9_relat_1(k3_xboole_0(esk2_0,esk3_0),k3_pua2mss1(esk1_0)),k3_xboole_0(k9_relat_1(esk2_0,k3_pua2mss1(esk1_0)),k9_relat_1(esk3_0,k3_pua2mss1(esk1_0)))) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_10])])]) ).

fof(c_0_12,plain,
    ! [X128,X129] : k4_xboole_0(X128,k4_xboole_0(X128,X129)) = k3_xboole_0(X128,X129),
    inference(variable_rename,[status(thm)],[t48_xboole_1]) ).

fof(c_0_13,plain,
    ! [X88,X89,X90] :
      ( ~ r1_tarski(X88,X89)
      | ~ r1_tarski(X88,X90)
      | r1_tarski(X88,k3_xboole_0(X89,X90)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t19_xboole_1])]) ).

cnf(c_0_14,negated_conjecture,
    ~ r1_tarski(k9_relat_1(k3_xboole_0(esk2_0,esk3_0),k3_pua2mss1(esk1_0)),k3_xboole_0(k9_relat_1(esk2_0,k3_pua2mss1(esk1_0)),k9_relat_1(esk3_0,k3_pua2mss1(esk1_0)))),
    inference(split_conjunct,[status(thm)],[c_0_11]) ).

cnf(c_0_15,plain,
    k4_xboole_0(X1,k4_xboole_0(X1,X2)) = k3_xboole_0(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_16,plain,
    ( r1_tarski(X1,k3_xboole_0(X2,X3))
    | ~ r1_tarski(X1,X2)
    | ~ r1_tarski(X1,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_13]) ).

fof(c_0_17,plain,
    ! [X256,X257,X258] :
      ( ~ v1_relat_1(X257)
      | ~ v1_relat_1(X258)
      | ~ r1_tarski(X257,X258)
      | r1_tarski(k9_relat_1(X257,X256),k9_relat_1(X258,X256)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t157_relat_1])])]) ).

fof(c_0_18,plain,
    ! [X29,X30] :
      ( ~ v1_relat_1(X30)
      | ~ r1_tarski(X29,X30)
      | v1_relat_1(X29) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t3_relat_1])]) ).

cnf(c_0_19,negated_conjecture,
    ~ r1_tarski(k9_relat_1(k4_xboole_0(esk2_0,k4_xboole_0(esk2_0,esk3_0)),k3_pua2mss1(esk1_0)),k4_xboole_0(k9_relat_1(esk2_0,k3_pua2mss1(esk1_0)),k4_xboole_0(k9_relat_1(esk2_0,k3_pua2mss1(esk1_0)),k9_relat_1(esk3_0,k3_pua2mss1(esk1_0))))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_14,c_0_15]),c_0_15]) ).

cnf(c_0_20,plain,
    ( r1_tarski(X1,k4_xboole_0(X2,k4_xboole_0(X2,X3)))
    | ~ r1_tarski(X1,X3)
    | ~ r1_tarski(X1,X2) ),
    inference(rw,[status(thm)],[c_0_16,c_0_15]) ).

cnf(c_0_21,plain,
    ( r1_tarski(k9_relat_1(X1,X3),k9_relat_1(X2,X3))
    | ~ v1_relat_1(X1)
    | ~ v1_relat_1(X2)
    | ~ r1_tarski(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_17]) ).

cnf(c_0_22,plain,
    ( v1_relat_1(X2)
    | ~ v1_relat_1(X1)
    | ~ r1_tarski(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

fof(c_0_23,plain,
    ! [X79] : k3_xboole_0(X79,k1_xboole_0) = k1_xboole_0,
    inference(variable_rename,[status(thm)],[t2_boole]) ).

cnf(c_0_24,negated_conjecture,
    ( ~ r1_tarski(k9_relat_1(k4_xboole_0(esk2_0,k4_xboole_0(esk2_0,esk3_0)),k3_pua2mss1(esk1_0)),k9_relat_1(esk3_0,k3_pua2mss1(esk1_0)))
    | ~ r1_tarski(k9_relat_1(k4_xboole_0(esk2_0,k4_xboole_0(esk2_0,esk3_0)),k3_pua2mss1(esk1_0)),k9_relat_1(esk2_0,k3_pua2mss1(esk1_0))) ),
    inference(spm,[status(thm)],[c_0_19,c_0_20]) ).

cnf(c_0_25,plain,
    ( r1_tarski(k9_relat_1(X1,X2),k9_relat_1(X3,X2))
    | ~ v1_relat_1(X3)
    | ~ r1_tarski(X1,X3) ),
    inference(csr,[status(thm)],[c_0_21,c_0_22]) ).

cnf(c_0_26,negated_conjecture,
    v1_relat_1(esk3_0),
    inference(split_conjunct,[status(thm)],[c_0_11]) ).

fof(c_0_27,plain,
    ! [X583,X584] : r1_tarski(k4_xboole_0(X583,X584),X583),
    inference(variable_rename,[status(thm)],[t36_xboole_1]) ).

fof(c_0_28,plain,
    ! [X130,X131,X132] : k3_xboole_0(X130,k4_xboole_0(X131,X132)) = k4_xboole_0(k3_xboole_0(X130,X131),X132),
    inference(variable_rename,[status(thm)],[t49_xboole_1]) ).

cnf(c_0_29,plain,
    k3_xboole_0(X1,k1_xboole_0) = k1_xboole_0,
    inference(split_conjunct,[status(thm)],[c_0_23]) ).

fof(c_0_30,plain,
    ! [X569] : k4_xboole_0(X569,k1_xboole_0) = X569,
    inference(variable_rename,[status(thm)],[t3_boole]) ).

cnf(c_0_31,negated_conjecture,
    ( ~ r1_tarski(k9_relat_1(k4_xboole_0(esk2_0,k4_xboole_0(esk2_0,esk3_0)),k3_pua2mss1(esk1_0)),k9_relat_1(esk2_0,k3_pua2mss1(esk1_0)))
    | ~ r1_tarski(k4_xboole_0(esk2_0,k4_xboole_0(esk2_0,esk3_0)),esk3_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_24,c_0_25]),c_0_26])]) ).

cnf(c_0_32,negated_conjecture,
    v1_relat_1(esk2_0),
    inference(split_conjunct,[status(thm)],[c_0_11]) ).

cnf(c_0_33,plain,
    r1_tarski(k4_xboole_0(X1,X2),X1),
    inference(split_conjunct,[status(thm)],[c_0_27]) ).

fof(c_0_34,plain,
    ! [X585,X586] :
      ( ( k4_xboole_0(X585,X586) != k1_xboole_0
        | r1_tarski(X585,X586) )
      & ( ~ r1_tarski(X585,X586)
        | k4_xboole_0(X585,X586) = k1_xboole_0 ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t37_xboole_1])]) ).

cnf(c_0_35,plain,
    k3_xboole_0(X1,k4_xboole_0(X2,X3)) = k4_xboole_0(k3_xboole_0(X1,X2),X3),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_36,plain,
    k4_xboole_0(X1,k4_xboole_0(X1,k1_xboole_0)) = k1_xboole_0,
    inference(rw,[status(thm)],[c_0_29,c_0_15]) ).

cnf(c_0_37,plain,
    k4_xboole_0(X1,k1_xboole_0) = X1,
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

cnf(c_0_38,negated_conjecture,
    ~ r1_tarski(k4_xboole_0(esk2_0,k4_xboole_0(esk2_0,esk3_0)),esk3_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_31,c_0_25]),c_0_32]),c_0_33])]) ).

cnf(c_0_39,plain,
    ( r1_tarski(X1,X2)
    | k4_xboole_0(X1,X2) != k1_xboole_0 ),
    inference(split_conjunct,[status(thm)],[c_0_34]) ).

cnf(c_0_40,plain,
    k4_xboole_0(X1,k4_xboole_0(X1,k4_xboole_0(X2,X3))) = k4_xboole_0(k4_xboole_0(X1,k4_xboole_0(X1,X2)),X3),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_35,c_0_15]),c_0_15]) ).

cnf(c_0_41,plain,
    k4_xboole_0(X1,X1) = k1_xboole_0,
    inference(rw,[status(thm)],[c_0_36,c_0_37]) ).

cnf(c_0_42,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38,c_0_39]),c_0_40]),c_0_41]),c_0_37]),c_0_41])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : SEU420+2 : TPTP v8.1.0. Released v3.4.0.
% 0.11/0.12  % Command  : enigmatic-eprover.py %s %d 1
% 0.12/0.33  % Computer : n019.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Mon Jun 20 13:31:41 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.19/0.44  # ENIGMATIC: Selected SinE mode:
% 0.43/0.59  # Parsing /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.43/0.59  # Filter: axfilter_auto   0 goes into file theBenchmark_axfilter_auto   0.p
% 0.43/0.59  # Filter: axfilter_auto   1 goes into file theBenchmark_axfilter_auto   1.p
% 0.43/0.59  # Filter: axfilter_auto   2 goes into file theBenchmark_axfilter_auto   2.p
% 17.03/4.70  # ENIGMATIC: Solved by autoschedule:
% 17.03/4.70  # SinE strategy is gf120_h_gu_RUU_F100_L00500
% 17.03/4.70  # Trying AutoSched0 for 150 seconds
% 17.03/4.70  # AutoSched0-Mode selected heuristic G_E___302_C18_F1_URBAN_S5PRR_RG_S0Y
% 17.03/4.70  # and selection function SelectMaxLComplexAvoidPosPred.
% 17.03/4.70  #
% 17.03/4.70  # Preprocessing time       : 0.084 s
% 17.03/4.70  
% 17.03/4.70  # Proof found!
% 17.03/4.70  # SZS status Theorem
% 17.03/4.70  # SZS output start CNFRefutation
% See solution above
% 17.03/4.71  # Training examples: 0 positive, 0 negative
% 17.03/4.71  
% 17.03/4.71  # -------------------------------------------------
% 17.03/4.71  # User time                : 0.573 s
% 17.03/4.71  # System time              : 0.019 s
% 17.03/4.71  # Total time               : 0.592 s
% 17.03/4.71  # Maximum resident set size: 10160 pages
% 17.03/4.71  
%------------------------------------------------------------------------------