TSTP Solution File: SEU353+1 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SEU353+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n004.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 08:49:07 EDT 2022

% Result   : Theorem 4.27s 1.63s
% Output   : Proof 6.56s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.09/0.11  % Problem  : SEU353+1 : TPTP v8.1.0. Released v3.3.0.
% 0.09/0.12  % Command  : ePrincess-casc -timeout=%d %s
% 0.12/0.33  % Computer : n004.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Mon Jun 20 11:45:23 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.18/0.58          ____       _                          
% 0.18/0.58    ___  / __ \_____(_)___  ________  __________
% 0.18/0.58   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.18/0.58  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.18/0.58  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.18/0.58  
% 0.18/0.58  A Theorem Prover for First-Order Logic
% 0.18/0.58  (ePrincess v.1.0)
% 0.18/0.58  
% 0.18/0.58  (c) Philipp Rümmer, 2009-2015
% 0.18/0.58  (c) Peter Backeman, 2014-2015
% 0.18/0.58  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.18/0.58  Free software under GNU Lesser General Public License (LGPL).
% 0.18/0.58  Bug reports to peter@backeman.se
% 0.18/0.58  
% 0.18/0.58  For more information, visit http://user.uu.se/~petba168/breu/
% 0.18/0.58  
% 0.18/0.58  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.70/0.63  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.78/0.95  Prover 0: Preprocessing ...
% 2.72/1.29  Prover 0: Warning: ignoring some quantifiers
% 3.03/1.33  Prover 0: Constructing countermodel ...
% 4.27/1.62  Prover 0: proved (992ms)
% 4.27/1.63  
% 4.27/1.63  No countermodel exists, formula is valid
% 4.27/1.63  % SZS status Theorem for theBenchmark
% 4.27/1.63  
% 4.27/1.63  Generating proof ... Warning: ignoring some quantifiers
% 5.92/2.05  found it (size 53)
% 5.92/2.05  
% 5.92/2.05  % SZS output start Proof for theBenchmark
% 5.92/2.05  Assumed formulas after preprocessing and simplification: 
% 5.92/2.05  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] :  ? [v8] :  ? [v9] : ( ~ (v4 = v3) & apply_as_element(v1, v1, v2, v3) = v4 & identity_on_carrier(v0) = v2 & the_carrier(v0) = v1 & one_sorted_str(v9) & one_sorted_str(v5) & one_sorted_str(v0) & empty(v8) & empty(v7) & empty(empty_set) & one_to_one(v8) & element(v3, v1) & relation(v8) & function(v8) &  ~ empty_carrier(v5) &  ~ empty_carrier(v0) &  ~ empty(v6) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] :  ! [v14] :  ! [v15] : (v11 = v10 |  ~ (apply_as_element(v15, v14, v13, v12) = v11) |  ~ (apply_as_element(v15, v14, v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] :  ! [v14] : ( ~ (apply_as_element(v10, v11, v12, v13) = v14) |  ~ element(v13, v10) |  ~ quasi_total(v12, v10, v11) |  ~ function(v12) |  ~ relation_of2(v12, v10, v11) | apply(v12, v13) = v14 | empty(v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] :  ! [v14] : ( ~ (apply_as_element(v10, v11, v12, v13) = v14) |  ~ element(v13, v10) |  ~ quasi_total(v12, v10, v11) |  ~ function(v12) |  ~ relation_of2(v12, v10, v11) | empty(v10) | element(v14, v11)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v13 = v11 |  ~ (apply(v12, v11) = v13) |  ~ (identity_relation(v10) = v12) |  ~ in(v11, v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (apply(v13, v12) = v11) |  ~ (apply(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (cartesian_product2(v13, v12) = v11) |  ~ (cartesian_product2(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (cartesian_product2(v10, v11) = v13) |  ~ relation_of2_as_subset(v12, v10, v11) |  ? [v14] : (powerset(v13) = v14 & element(v12, v14))) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (powerset(v12) = v13) |  ~ empty(v12) |  ~ element(v11, v13) |  ~ in(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (powerset(v12) = v13) |  ~ element(v11, v13) |  ~ in(v10, v11) | element(v10, v12)) &  ? [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (cartesian_product2(v11, v12) = v13) | relation(v10) |  ? [v14] : (powerset(v13) = v14 &  ~ element(v10, v14))) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (identity_relation(v12) = v11) |  ~ (identity_relation(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (identity_on_carrier(v12) = v11) |  ~ (identity_on_carrier(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (the_carrier(v12) = v11) |  ~ (the_carrier(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (identity_as_relation_of(v12) = v11) |  ~ (identity_as_relation_of(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (powerset(v12) = v11) |  ~ (powerset(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (cartesian_product2(v10, v11) = v12) |  ~ empty(v12) | empty(v11) | empty(v10)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (powerset(v11) = v12) |  ~ subset(v10, v11) | element(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (powerset(v11) = v12) |  ~ element(v10, v12) | subset(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ relation_of2_as_subset(v12, v10, v11) | relation_of2(v12, v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ empty(v12) |  ~ quasi_total(v12, v10, v11) |  ~ function(v12) |  ~ relation_of2(v12, v10, v11) | empty(v11) | empty(v10)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ onto(v12, v10, v11) |  ~ one_to_one(v12) |  ~ quasi_total(v12, v10, v11) |  ~ function(v12) |  ~ relation_of2(v12, v10, v11) | bijective(v12, v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ bijective(v12, v10, v11) |  ~ quasi_total(v12, v10, v11) |  ~ function(v12) |  ~ relation_of2(v12, v10, v11) | onto(v12, v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ bijective(v12, v10, v11) |  ~ quasi_total(v12, v10, v11) |  ~ function(v12) |  ~ relation_of2(v12, v10, v11) | one_to_one(v12)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ quasi_total(v12, v10, v11) |  ~ function(v12) |  ~ relation_of2(v12, v10, v11) | empty(v11) | empty(v10) | v1_partfun1(v12, v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ quasi_total(v12, v10, v11) |  ~ function(v12) |  ~ relation_of2(v12, v10, v11) | empty(v11) | v1_partfun1(v12, v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ v1_partfun1(v12, v10, v11) |  ~ function(v12) |  ~ relation_of2(v12, v10, v11) | quasi_total(v12, v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ relation_of2(v12, v10, v11) | relation_of2_as_subset(v12, v10, v11)) &  ! [v10] :  ! [v11] : (v11 = v10 |  ~ empty(v11) |  ~ empty(v10)) &  ! [v10] :  ! [v11] : ( ~ (identity_relation(v10) = v11) | identity_as_relation_of(v10) = v11) &  ! [v10] :  ! [v11] : ( ~ (identity_relation(v10) = v11) | antisymmetric(v11)) &  ! [v10] :  ! [v11] : ( ~ (identity_relation(v10) = v11) | reflexive(v11)) &  ! [v10] :  ! [v11] : ( ~ (identity_relation(v10) = v11) | transitive(v11)) &  ! [v10] :  ! [v11] : ( ~ (identity_relation(v10) = v11) | symmetric(v11)) &  ! [v10] :  ! [v11] : ( ~ (identity_relation(v10) = v11) | relation(v11)) &  ! [v10] :  ! [v11] : ( ~ (identity_relation(v10) = v11) | function(v11)) &  ! [v10] :  ! [v11] : ( ~ (identity_on_carrier(v10) = v11) |  ~ one_sorted_str(v10) | function(v11)) &  ! [v10] :  ! [v11] : ( ~ (identity_on_carrier(v10) = v11) |  ~ one_sorted_str(v10) |  ? [v12] : (the_carrier(v10) = v12 & identity_as_relation_of(v12) = v11)) &  ! [v10] :  ! [v11] : ( ~ (identity_on_carrier(v10) = v11) |  ~ one_sorted_str(v10) |  ? [v12] : (the_carrier(v10) = v12 & relation_of2_as_subset(v11, v12, v12) & quasi_total(v11, v12, v12))) &  ! [v10] :  ! [v11] : ( ~ (the_carrier(v10) = v11) |  ~ one_sorted_str(v10) |  ~ empty(v11) | empty_carrier(v10)) &  ! [v10] :  ! [v11] : ( ~ (the_carrier(v10) = v11) |  ~ one_sorted_str(v10) | empty_carrier(v10) |  ? [v12] :  ? [v13] : (powerset(v11) = v12 & element(v13, v12) &  ~ empty(v13))) &  ! [v10] :  ! [v11] : ( ~ (the_carrier(v10) = v11) |  ~ one_sorted_str(v10) |  ? [v12] : (identity_on_carrier(v10) = v12 & identity_as_relation_of(v11) = v12)) &  ! [v10] :  ! [v11] : ( ~ (the_carrier(v10) = v11) |  ~ one_sorted_str(v10) |  ? [v12] : (identity_on_carrier(v10) = v12 & relation_of2_as_subset(v12, v11, v11) & quasi_total(v12, v11, v11) & function(v12))) &  ! [v10] :  ! [v11] : ( ~ (identity_as_relation_of(v10) = v11) | identity_relation(v10) = v11) &  ! [v10] :  ! [v11] : ( ~ (identity_as_relation_of(v10) = v11) | relation_of2_as_subset(v11, v10, v10)) &  ! [v10] :  ! [v11] : ( ~ (identity_as_relation_of(v10) = v11) | v1_partfun1(v11, v10, v10)) &  ! [v10] :  ! [v11] : ( ~ (powerset(v10) = v11) |  ~ empty(v11)) &  ! [v10] :  ! [v11] : ( ~ (powerset(v10) = v11) | empty(v10) |  ? [v12] : (element(v12, v11) &  ~ empty(v12))) &  ! [v10] :  ! [v11] : ( ~ (powerset(v10) = v11) |  ? [v12] : (empty(v12) & element(v12, v11))) &  ! [v10] :  ! [v11] : ( ~ empty(v11) |  ~ in(v10, v11)) &  ! [v10] :  ! [v11] : ( ~ element(v10, v11) | empty(v11) | in(v10, v11)) &  ! [v10] :  ! [v11] : ( ~ reflexive(v11) |  ~ quasi_total(v11, v10, v10) |  ~ v1_partfun1(v11, v10, v10) |  ~ function(v11) |  ~ relation_of2(v11, v10, v10) | onto(v11, v10, v10)) &  ! [v10] :  ! [v11] : ( ~ reflexive(v11) |  ~ quasi_total(v11, v10, v10) |  ~ v1_partfun1(v11, v10, v10) |  ~ function(v11) |  ~ relation_of2(v11, v10, v10) | one_to_one(v11)) &  ! [v10] :  ! [v11] : ( ~ reflexive(v11) |  ~ quasi_total(v11, v10, v10) |  ~ v1_partfun1(v11, v10, v10) |  ~ function(v11) |  ~ relation_of2(v11, v10, v10) | bijective(v11, v10, v10)) &  ! [v10] :  ! [v11] : ( ~ in(v11, v10) |  ~ in(v10, v11)) &  ! [v10] :  ! [v11] : ( ~ in(v10, v11) | element(v10, v11)) &  ! [v10] : (v10 = empty_set |  ~ empty(v10)) &  ! [v10] : ( ~ transitive(v10) |  ~ symmetric(v10) |  ~ relation(v10) | reflexive(v10)) &  ? [v10] :  ? [v11] :  ? [v12] : relation_of2_as_subset(v12, v10, v11) &  ? [v10] :  ? [v11] :  ? [v12] : relation_of2(v12, v10, v11) &  ? [v10] :  ? [v11] :  ? [v12] : (relation(v12) & quasi_total(v12, v10, v11) & function(v12) & relation_of2(v12, v10, v11)) &  ? [v10] :  ? [v11] :  ? [v12] : (relation(v12) & function(v12) & relation_of2(v12, v10, v11)) &  ? [v10] :  ? [v11] : element(v11, v10) &  ? [v10] :  ? [v11] : (antisymmetric(v11) & reflexive(v11) & transitive(v11) & symmetric(v11) & relation(v11) & v1_partfun1(v11, v10, v10) & relation_of2(v11, v10, v10)) &  ? [v10] :  ? [v11] : (onto(v11, v10, v10) & one_to_one(v11) & bijective(v11, v10, v10) & relation(v11) & quasi_total(v11, v10, v10) & function(v11) & relation_of2(v11, v10, v10)) &  ? [v10] : subset(v10, v10))
% 6.34/2.10  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9 yields:
% 6.34/2.10  | (1)  ~ (all_0_5_5 = all_0_6_6) & apply_as_element(all_0_8_8, all_0_8_8, all_0_7_7, all_0_6_6) = all_0_5_5 & identity_on_carrier(all_0_9_9) = all_0_7_7 & the_carrier(all_0_9_9) = all_0_8_8 & one_sorted_str(all_0_0_0) & one_sorted_str(all_0_4_4) & one_sorted_str(all_0_9_9) & empty(all_0_1_1) & empty(all_0_2_2) & empty(empty_set) & one_to_one(all_0_1_1) & element(all_0_6_6, all_0_8_8) & relation(all_0_1_1) & function(all_0_1_1) &  ~ empty_carrier(all_0_4_4) &  ~ empty_carrier(all_0_9_9) &  ~ empty(all_0_3_3) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] :  ! [v5] : (v1 = v0 |  ~ (apply_as_element(v5, v4, v3, v2) = v1) |  ~ (apply_as_element(v5, v4, v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : ( ~ (apply_as_element(v0, v1, v2, v3) = v4) |  ~ element(v3, v0) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | apply(v2, v3) = v4 | empty(v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : ( ~ (apply_as_element(v0, v1, v2, v3) = v4) |  ~ element(v3, v0) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | empty(v0) | element(v4, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = v1 |  ~ (apply(v2, v1) = v3) |  ~ (identity_relation(v0) = v2) |  ~ in(v1, v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (apply(v3, v2) = v1) |  ~ (apply(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (cartesian_product2(v3, v2) = v1) |  ~ (cartesian_product2(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (cartesian_product2(v0, v1) = v3) |  ~ relation_of2_as_subset(v2, v0, v1) |  ? [v4] : (powerset(v3) = v4 & element(v2, v4))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ empty(v2) |  ~ element(v1, v3) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ in(v0, v1) | element(v0, v2)) &  ? [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (cartesian_product2(v1, v2) = v3) | relation(v0) |  ? [v4] : (powerset(v3) = v4 &  ~ element(v0, v4))) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (identity_relation(v2) = v1) |  ~ (identity_relation(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (identity_on_carrier(v2) = v1) |  ~ (identity_on_carrier(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (the_carrier(v2) = v1) |  ~ (the_carrier(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (identity_as_relation_of(v2) = v1) |  ~ (identity_as_relation_of(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (powerset(v2) = v1) |  ~ (powerset(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (cartesian_product2(v0, v1) = v2) |  ~ empty(v2) | empty(v1) | empty(v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ subset(v0, v1) | element(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ element(v0, v2) | subset(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ relation_of2_as_subset(v2, v0, v1) | relation_of2(v2, v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ empty(v2) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | empty(v1) | empty(v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ onto(v2, v0, v1) |  ~ one_to_one(v2) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | bijective(v2, v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ bijective(v2, v0, v1) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | onto(v2, v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ bijective(v2, v0, v1) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | one_to_one(v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | empty(v1) | empty(v0) | v1_partfun1(v2, v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | empty(v1) | v1_partfun1(v2, v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ v1_partfun1(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | quasi_total(v2, v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ relation_of2(v2, v0, v1) | relation_of2_as_subset(v2, v0, v1)) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ empty(v1) |  ~ empty(v0)) &  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | identity_as_relation_of(v0) = v1) &  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | antisymmetric(v1)) &  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | reflexive(v1)) &  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | transitive(v1)) &  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | symmetric(v1)) &  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | relation(v1)) &  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | function(v1)) &  ! [v0] :  ! [v1] : ( ~ (identity_on_carrier(v0) = v1) |  ~ one_sorted_str(v0) | function(v1)) &  ! [v0] :  ! [v1] : ( ~ (identity_on_carrier(v0) = v1) |  ~ one_sorted_str(v0) |  ? [v2] : (the_carrier(v0) = v2 & identity_as_relation_of(v2) = v1)) &  ! [v0] :  ! [v1] : ( ~ (identity_on_carrier(v0) = v1) |  ~ one_sorted_str(v0) |  ? [v2] : (the_carrier(v0) = v2 & relation_of2_as_subset(v1, v2, v2) & quasi_total(v1, v2, v2))) &  ! [v0] :  ! [v1] : ( ~ (the_carrier(v0) = v1) |  ~ one_sorted_str(v0) |  ~ empty(v1) | empty_carrier(v0)) &  ! [v0] :  ! [v1] : ( ~ (the_carrier(v0) = v1) |  ~ one_sorted_str(v0) | empty_carrier(v0) |  ? [v2] :  ? [v3] : (powerset(v1) = v2 & element(v3, v2) &  ~ empty(v3))) &  ! [v0] :  ! [v1] : ( ~ (the_carrier(v0) = v1) |  ~ one_sorted_str(v0) |  ? [v2] : (identity_on_carrier(v0) = v2 & identity_as_relation_of(v1) = v2)) &  ! [v0] :  ! [v1] : ( ~ (the_carrier(v0) = v1) |  ~ one_sorted_str(v0) |  ? [v2] : (identity_on_carrier(v0) = v2 & relation_of2_as_subset(v2, v1, v1) & quasi_total(v2, v1, v1) & function(v2))) &  ! [v0] :  ! [v1] : ( ~ (identity_as_relation_of(v0) = v1) | identity_relation(v0) = v1) &  ! [v0] :  ! [v1] : ( ~ (identity_as_relation_of(v0) = v1) | relation_of2_as_subset(v1, v0, v0)) &  ! [v0] :  ! [v1] : ( ~ (identity_as_relation_of(v0) = v1) | v1_partfun1(v1, v0, v0)) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ~ empty(v1)) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | empty(v0) |  ? [v2] : (element(v2, v1) &  ~ empty(v2))) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ? [v2] : (empty(v2) & element(v2, v1))) &  ! [v0] :  ! [v1] : ( ~ empty(v1) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ element(v0, v1) | empty(v1) | in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ reflexive(v1) |  ~ quasi_total(v1, v0, v0) |  ~ v1_partfun1(v1, v0, v0) |  ~ function(v1) |  ~ relation_of2(v1, v0, v0) | onto(v1, v0, v0)) &  ! [v0] :  ! [v1] : ( ~ reflexive(v1) |  ~ quasi_total(v1, v0, v0) |  ~ v1_partfun1(v1, v0, v0) |  ~ function(v1) |  ~ relation_of2(v1, v0, v0) | one_to_one(v1)) &  ! [v0] :  ! [v1] : ( ~ reflexive(v1) |  ~ quasi_total(v1, v0, v0) |  ~ v1_partfun1(v1, v0, v0) |  ~ function(v1) |  ~ relation_of2(v1, v0, v0) | bijective(v1, v0, v0)) &  ! [v0] :  ! [v1] : ( ~ in(v1, v0) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ in(v0, v1) | element(v0, v1)) &  ! [v0] : (v0 = empty_set |  ~ empty(v0)) &  ! [v0] : ( ~ transitive(v0) |  ~ symmetric(v0) |  ~ relation(v0) | reflexive(v0)) &  ? [v0] :  ? [v1] :  ? [v2] : relation_of2_as_subset(v2, v0, v1) &  ? [v0] :  ? [v1] :  ? [v2] : relation_of2(v2, v0, v1) &  ? [v0] :  ? [v1] :  ? [v2] : (relation(v2) & quasi_total(v2, v0, v1) & function(v2) & relation_of2(v2, v0, v1)) &  ? [v0] :  ? [v1] :  ? [v2] : (relation(v2) & function(v2) & relation_of2(v2, v0, v1)) &  ? [v0] :  ? [v1] : element(v1, v0) &  ? [v0] :  ? [v1] : (antisymmetric(v1) & reflexive(v1) & transitive(v1) & symmetric(v1) & relation(v1) & v1_partfun1(v1, v0, v0) & relation_of2(v1, v0, v0)) &  ? [v0] :  ? [v1] : (onto(v1, v0, v0) & one_to_one(v1) & bijective(v1, v0, v0) & relation(v1) & quasi_total(v1, v0, v0) & function(v1) & relation_of2(v1, v0, v0)) &  ? [v0] : subset(v0, v0)
% 6.49/2.12  |
% 6.49/2.12  | Applying alpha-rule on (1) yields:
% 6.49/2.12  | (2)  ? [v0] :  ? [v1] :  ? [v2] : relation_of2(v2, v0, v1)
% 6.49/2.12  | (3) the_carrier(all_0_9_9) = all_0_8_8
% 6.49/2.12  | (4)  ? [v0] :  ? [v1] : (onto(v1, v0, v0) & one_to_one(v1) & bijective(v1, v0, v0) & relation(v1) & quasi_total(v1, v0, v0) & function(v1) & relation_of2(v1, v0, v0))
% 6.49/2.12  | (5)  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | function(v1))
% 6.49/2.12  | (6)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (identity_as_relation_of(v2) = v1) |  ~ (identity_as_relation_of(v2) = v0))
% 6.49/2.12  | (7) relation(all_0_1_1)
% 6.49/2.12  | (8) one_sorted_str(all_0_4_4)
% 6.49/2.12  | (9)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | empty(v0) |  ? [v2] : (element(v2, v1) &  ~ empty(v2)))
% 6.49/2.12  | (10)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ~ empty(v1))
% 6.49/2.12  | (11)  ! [v0] :  ! [v1] : ( ~ empty(v1) |  ~ in(v0, v1))
% 6.49/2.12  | (12)  ! [v0] :  ! [v1] : ( ~ (the_carrier(v0) = v1) |  ~ one_sorted_str(v0) | empty_carrier(v0) |  ? [v2] :  ? [v3] : (powerset(v1) = v2 & element(v3, v2) &  ~ empty(v3)))
% 6.49/2.12  | (13)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ v1_partfun1(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | quasi_total(v2, v0, v1))
% 6.49/2.12  | (14)  ! [v0] :  ! [v1] : ( ~ (identity_on_carrier(v0) = v1) |  ~ one_sorted_str(v0) | function(v1))
% 6.49/2.12  | (15)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ empty(v2) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | empty(v1) | empty(v0))
% 6.49/2.12  | (16)  ! [v0] :  ! [v1] : ( ~ (identity_on_carrier(v0) = v1) |  ~ one_sorted_str(v0) |  ? [v2] : (the_carrier(v0) = v2 & relation_of2_as_subset(v1, v2, v2) & quasi_total(v1, v2, v2)))
% 6.49/2.12  | (17)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = v1 |  ~ (apply(v2, v1) = v3) |  ~ (identity_relation(v0) = v2) |  ~ in(v1, v0))
% 6.49/2.13  | (18)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ empty(v1) |  ~ empty(v0))
% 6.49/2.13  | (19) element(all_0_6_6, all_0_8_8)
% 6.49/2.13  | (20)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ empty(v2) |  ~ element(v1, v3) |  ~ in(v0, v1))
% 6.56/2.13  | (21)  ? [v0] :  ? [v1] : (antisymmetric(v1) & reflexive(v1) & transitive(v1) & symmetric(v1) & relation(v1) & v1_partfun1(v1, v0, v0) & relation_of2(v1, v0, v0))
% 6.56/2.13  | (22)  ? [v0] : subset(v0, v0)
% 6.56/2.13  | (23)  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | reflexive(v1))
% 6.56/2.13  | (24) function(all_0_1_1)
% 6.56/2.13  | (25) one_to_one(all_0_1_1)
% 6.56/2.13  | (26)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : ( ~ (apply_as_element(v0, v1, v2, v3) = v4) |  ~ element(v3, v0) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | empty(v0) | element(v4, v1))
% 6.56/2.13  | (27)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (cartesian_product2(v0, v1) = v3) |  ~ relation_of2_as_subset(v2, v0, v1) |  ? [v4] : (powerset(v3) = v4 & element(v2, v4)))
% 6.56/2.13  | (28)  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | relation(v1))
% 6.56/2.13  | (29)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | empty(v1) | empty(v0) | v1_partfun1(v2, v0, v1))
% 6.56/2.13  | (30)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ relation_of2(v2, v0, v1) | relation_of2_as_subset(v2, v0, v1))
% 6.56/2.13  | (31)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ relation_of2_as_subset(v2, v0, v1) | relation_of2(v2, v0, v1))
% 6.56/2.13  | (32)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (identity_relation(v2) = v1) |  ~ (identity_relation(v2) = v0))
% 6.56/2.13  | (33)  ! [v0] :  ! [v1] : ( ~ reflexive(v1) |  ~ quasi_total(v1, v0, v0) |  ~ v1_partfun1(v1, v0, v0) |  ~ function(v1) |  ~ relation_of2(v1, v0, v0) | onto(v1, v0, v0))
% 6.56/2.13  | (34)  ! [v0] :  ! [v1] : ( ~ in(v0, v1) | element(v0, v1))
% 6.56/2.13  | (35)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ bijective(v2, v0, v1) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | onto(v2, v0, v1))
% 6.56/2.13  | (36)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ onto(v2, v0, v1) |  ~ one_to_one(v2) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | bijective(v2, v0, v1))
% 6.56/2.13  | (37)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | empty(v1) | v1_partfun1(v2, v0, v1))
% 6.56/2.13  | (38)  ! [v0] :  ! [v1] : ( ~ reflexive(v1) |  ~ quasi_total(v1, v0, v0) |  ~ v1_partfun1(v1, v0, v0) |  ~ function(v1) |  ~ relation_of2(v1, v0, v0) | bijective(v1, v0, v0))
% 6.56/2.13  | (39) empty(empty_set)
% 6.56/2.13  | (40)  ! [v0] :  ! [v1] : ( ~ (identity_as_relation_of(v0) = v1) | v1_partfun1(v1, v0, v0))
% 6.56/2.13  | (41)  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | antisymmetric(v1))
% 6.56/2.13  | (42)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (cartesian_product2(v3, v2) = v1) |  ~ (cartesian_product2(v3, v2) = v0))
% 6.56/2.13  | (43)  ! [v0] :  ! [v1] : ( ~ reflexive(v1) |  ~ quasi_total(v1, v0, v0) |  ~ v1_partfun1(v1, v0, v0) |  ~ function(v1) |  ~ relation_of2(v1, v0, v0) | one_to_one(v1))
% 6.56/2.13  | (44)  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | transitive(v1))
% 6.56/2.13  | (45)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] :  ! [v5] : (v1 = v0 |  ~ (apply_as_element(v5, v4, v3, v2) = v1) |  ~ (apply_as_element(v5, v4, v3, v2) = v0))
% 6.56/2.13  | (46)  ! [v0] :  ! [v1] : ( ~ element(v0, v1) | empty(v1) | in(v0, v1))
% 6.56/2.13  | (47)  ~ (all_0_5_5 = all_0_6_6)
% 6.56/2.13  | (48)  ! [v0] :  ! [v1] : ( ~ (the_carrier(v0) = v1) |  ~ one_sorted_str(v0) |  ? [v2] : (identity_on_carrier(v0) = v2 & relation_of2_as_subset(v2, v1, v1) & quasi_total(v2, v1, v1) & function(v2)))
% 6.56/2.14  | (49)  ! [v0] :  ! [v1] : ( ~ (the_carrier(v0) = v1) |  ~ one_sorted_str(v0) |  ? [v2] : (identity_on_carrier(v0) = v2 & identity_as_relation_of(v1) = v2))
% 6.56/2.14  | (50)  ! [v0] :  ! [v1] : ( ~ (identity_on_carrier(v0) = v1) |  ~ one_sorted_str(v0) |  ? [v2] : (the_carrier(v0) = v2 & identity_as_relation_of(v2) = v1))
% 6.56/2.14  | (51) empty(all_0_2_2)
% 6.56/2.14  | (52)  ! [v0] :  ! [v1] : ( ~ in(v1, v0) |  ~ in(v0, v1))
% 6.56/2.14  | (53)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (identity_on_carrier(v2) = v1) |  ~ (identity_on_carrier(v2) = v0))
% 6.56/2.14  | (54)  ~ empty(all_0_3_3)
% 6.56/2.14  | (55)  ? [v0] :  ? [v1] :  ? [v2] : relation_of2_as_subset(v2, v0, v1)
% 6.56/2.14  | (56)  ! [v0] :  ! [v1] : ( ~ (the_carrier(v0) = v1) |  ~ one_sorted_str(v0) |  ~ empty(v1) | empty_carrier(v0))
% 6.56/2.14  | (57)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (powerset(v2) = v1) |  ~ (powerset(v2) = v0))
% 6.56/2.14  | (58)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ? [v2] : (empty(v2) & element(v2, v1)))
% 6.56/2.14  | (59)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : ( ~ (apply_as_element(v0, v1, v2, v3) = v4) |  ~ element(v3, v0) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | apply(v2, v3) = v4 | empty(v0))
% 6.56/2.14  | (60) empty(all_0_1_1)
% 6.56/2.14  | (61) apply_as_element(all_0_8_8, all_0_8_8, all_0_7_7, all_0_6_6) = all_0_5_5
% 6.56/2.14  | (62)  ? [v0] :  ? [v1] :  ? [v2] : (relation(v2) & function(v2) & relation_of2(v2, v0, v1))
% 6.56/2.14  | (63)  ! [v0] : ( ~ transitive(v0) |  ~ symmetric(v0) |  ~ relation(v0) | reflexive(v0))
% 6.56/2.14  | (64)  ! [v0] :  ! [v1] : ( ~ (identity_as_relation_of(v0) = v1) | identity_relation(v0) = v1)
% 6.56/2.14  | (65)  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | identity_as_relation_of(v0) = v1)
% 6.56/2.14  | (66) identity_on_carrier(all_0_9_9) = all_0_7_7
% 6.56/2.14  | (67)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ bijective(v2, v0, v1) |  ~ quasi_total(v2, v0, v1) |  ~ function(v2) |  ~ relation_of2(v2, v0, v1) | one_to_one(v2))
% 6.56/2.14  | (68)  ? [v0] :  ? [v1] :  ? [v2] : (relation(v2) & quasi_total(v2, v0, v1) & function(v2) & relation_of2(v2, v0, v1))
% 6.56/2.14  | (69)  ~ empty_carrier(all_0_9_9)
% 6.56/2.14  | (70)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (apply(v3, v2) = v1) |  ~ (apply(v3, v2) = v0))
% 6.56/2.14  | (71) one_sorted_str(all_0_9_9)
% 6.56/2.14  | (72)  ! [v0] :  ! [v1] : ( ~ (identity_as_relation_of(v0) = v1) | relation_of2_as_subset(v1, v0, v0))
% 6.56/2.14  | (73)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (cartesian_product2(v0, v1) = v2) |  ~ empty(v2) | empty(v1) | empty(v0))
% 6.56/2.14  | (74)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ in(v0, v1) | element(v0, v2))
% 6.56/2.14  | (75)  ? [v0] :  ? [v1] : element(v1, v0)
% 6.56/2.14  | (76)  ~ empty_carrier(all_0_4_4)
% 6.56/2.14  | (77) one_sorted_str(all_0_0_0)
% 6.56/2.14  | (78)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (the_carrier(v2) = v1) |  ~ (the_carrier(v2) = v0))
% 6.56/2.14  | (79)  ? [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (cartesian_product2(v1, v2) = v3) | relation(v0) |  ? [v4] : (powerset(v3) = v4 &  ~ element(v0, v4)))
% 6.56/2.14  | (80)  ! [v0] : (v0 = empty_set |  ~ empty(v0))
% 6.56/2.14  | (81)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ element(v0, v2) | subset(v0, v1))
% 6.56/2.14  | (82)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ subset(v0, v1) | element(v0, v2))
% 6.56/2.14  | (83)  ! [v0] :  ! [v1] : ( ~ (identity_relation(v0) = v1) | symmetric(v1))
% 6.56/2.14  |
% 6.56/2.15  | Instantiating formula (50) with all_0_7_7, all_0_9_9 and discharging atoms identity_on_carrier(all_0_9_9) = all_0_7_7, one_sorted_str(all_0_9_9), yields:
% 6.56/2.15  | (84)  ? [v0] : (the_carrier(all_0_9_9) = v0 & identity_as_relation_of(v0) = all_0_7_7)
% 6.56/2.15  |
% 6.56/2.15  | Instantiating formula (16) with all_0_7_7, all_0_9_9 and discharging atoms identity_on_carrier(all_0_9_9) = all_0_7_7, one_sorted_str(all_0_9_9), yields:
% 6.56/2.15  | (85)  ? [v0] : (the_carrier(all_0_9_9) = v0 & relation_of2_as_subset(all_0_7_7, v0, v0) & quasi_total(all_0_7_7, v0, v0))
% 6.56/2.15  |
% 6.56/2.15  | Instantiating formula (12) with all_0_8_8, all_0_9_9 and discharging atoms the_carrier(all_0_9_9) = all_0_8_8, one_sorted_str(all_0_9_9),  ~ empty_carrier(all_0_9_9), yields:
% 6.56/2.15  | (86)  ? [v0] :  ? [v1] : (powerset(all_0_8_8) = v0 & element(v1, v0) &  ~ empty(v1))
% 6.56/2.15  |
% 6.56/2.15  | Instantiating formula (49) with all_0_8_8, all_0_9_9 and discharging atoms the_carrier(all_0_9_9) = all_0_8_8, one_sorted_str(all_0_9_9), yields:
% 6.56/2.15  | (87)  ? [v0] : (identity_on_carrier(all_0_9_9) = v0 & identity_as_relation_of(all_0_8_8) = v0)
% 6.56/2.15  |
% 6.56/2.15  | Instantiating formula (48) with all_0_8_8, all_0_9_9 and discharging atoms the_carrier(all_0_9_9) = all_0_8_8, one_sorted_str(all_0_9_9), yields:
% 6.56/2.15  | (88)  ? [v0] : (identity_on_carrier(all_0_9_9) = v0 & relation_of2_as_subset(v0, all_0_8_8, all_0_8_8) & quasi_total(v0, all_0_8_8, all_0_8_8) & function(v0))
% 6.56/2.15  |
% 6.56/2.15  | Instantiating formula (46) with all_0_8_8, all_0_6_6 and discharging atoms element(all_0_6_6, all_0_8_8), yields:
% 6.56/2.15  | (89) empty(all_0_8_8) | in(all_0_6_6, all_0_8_8)
% 6.56/2.15  |
% 6.56/2.15  | Instantiating (88) with all_31_0_30 yields:
% 6.56/2.15  | (90) identity_on_carrier(all_0_9_9) = all_31_0_30 & relation_of2_as_subset(all_31_0_30, all_0_8_8, all_0_8_8) & quasi_total(all_31_0_30, all_0_8_8, all_0_8_8) & function(all_31_0_30)
% 6.56/2.15  |
% 6.56/2.15  | Applying alpha-rule on (90) yields:
% 6.56/2.15  | (91) identity_on_carrier(all_0_9_9) = all_31_0_30
% 6.56/2.15  | (92) relation_of2_as_subset(all_31_0_30, all_0_8_8, all_0_8_8)
% 6.56/2.15  | (93) quasi_total(all_31_0_30, all_0_8_8, all_0_8_8)
% 6.56/2.15  | (94) function(all_31_0_30)
% 6.56/2.15  |
% 6.56/2.15  | Instantiating (87) with all_33_0_31 yields:
% 6.56/2.15  | (95) identity_on_carrier(all_0_9_9) = all_33_0_31 & identity_as_relation_of(all_0_8_8) = all_33_0_31
% 6.56/2.15  |
% 6.56/2.15  | Applying alpha-rule on (95) yields:
% 6.56/2.15  | (96) identity_on_carrier(all_0_9_9) = all_33_0_31
% 6.56/2.15  | (97) identity_as_relation_of(all_0_8_8) = all_33_0_31
% 6.56/2.15  |
% 6.56/2.15  | Instantiating (85) with all_35_0_32 yields:
% 6.56/2.15  | (98) the_carrier(all_0_9_9) = all_35_0_32 & relation_of2_as_subset(all_0_7_7, all_35_0_32, all_35_0_32) & quasi_total(all_0_7_7, all_35_0_32, all_35_0_32)
% 6.56/2.15  |
% 6.56/2.15  | Applying alpha-rule on (98) yields:
% 6.56/2.15  | (99) the_carrier(all_0_9_9) = all_35_0_32
% 6.56/2.15  | (100) relation_of2_as_subset(all_0_7_7, all_35_0_32, all_35_0_32)
% 6.56/2.15  | (101) quasi_total(all_0_7_7, all_35_0_32, all_35_0_32)
% 6.56/2.15  |
% 6.56/2.15  | Instantiating (84) with all_37_0_33 yields:
% 6.56/2.15  | (102) the_carrier(all_0_9_9) = all_37_0_33 & identity_as_relation_of(all_37_0_33) = all_0_7_7
% 6.56/2.15  |
% 6.56/2.15  | Applying alpha-rule on (102) yields:
% 6.56/2.15  | (103) the_carrier(all_0_9_9) = all_37_0_33
% 6.56/2.15  | (104) identity_as_relation_of(all_37_0_33) = all_0_7_7
% 6.56/2.15  |
% 6.56/2.15  | Instantiating (86) with all_39_0_34, all_39_1_35 yields:
% 6.56/2.15  | (105) powerset(all_0_8_8) = all_39_1_35 & element(all_39_0_34, all_39_1_35) &  ~ empty(all_39_0_34)
% 6.56/2.15  |
% 6.56/2.15  | Applying alpha-rule on (105) yields:
% 6.56/2.15  | (106) powerset(all_0_8_8) = all_39_1_35
% 6.56/2.15  | (107) element(all_39_0_34, all_39_1_35)
% 6.56/2.15  | (108)  ~ empty(all_39_0_34)
% 6.56/2.15  |
% 6.56/2.15  | Instantiating formula (53) with all_0_9_9, all_33_0_31, all_0_7_7 and discharging atoms identity_on_carrier(all_0_9_9) = all_33_0_31, identity_on_carrier(all_0_9_9) = all_0_7_7, yields:
% 6.56/2.15  | (109) all_33_0_31 = all_0_7_7
% 6.56/2.15  |
% 6.56/2.15  | Instantiating formula (53) with all_0_9_9, all_31_0_30, all_33_0_31 and discharging atoms identity_on_carrier(all_0_9_9) = all_33_0_31, identity_on_carrier(all_0_9_9) = all_31_0_30, yields:
% 6.56/2.15  | (110) all_33_0_31 = all_31_0_30
% 6.56/2.15  |
% 6.56/2.15  | Instantiating formula (78) with all_0_9_9, all_37_0_33, all_0_8_8 and discharging atoms the_carrier(all_0_9_9) = all_37_0_33, the_carrier(all_0_9_9) = all_0_8_8, yields:
% 6.56/2.15  | (111) all_37_0_33 = all_0_8_8
% 6.56/2.15  |
% 6.56/2.15  | Instantiating formula (78) with all_0_9_9, all_35_0_32, all_37_0_33 and discharging atoms the_carrier(all_0_9_9) = all_37_0_33, the_carrier(all_0_9_9) = all_35_0_32, yields:
% 6.56/2.15  | (112) all_37_0_33 = all_35_0_32
% 6.56/2.15  |
% 6.56/2.16  | Combining equations (111,112) yields a new equation:
% 6.56/2.16  | (113) all_35_0_32 = all_0_8_8
% 6.56/2.16  |
% 6.56/2.16  | Combining equations (110,109) yields a new equation:
% 6.56/2.16  | (114) all_31_0_30 = all_0_7_7
% 6.56/2.16  |
% 6.56/2.16  | Simplifying 114 yields:
% 6.56/2.16  | (115) all_31_0_30 = all_0_7_7
% 6.56/2.16  |
% 6.56/2.16  | From (113) and (99) follows:
% 6.56/2.16  | (3) the_carrier(all_0_9_9) = all_0_8_8
% 6.56/2.16  |
% 6.56/2.16  | From (109) and (97) follows:
% 6.56/2.16  | (117) identity_as_relation_of(all_0_8_8) = all_0_7_7
% 6.56/2.16  |
% 6.56/2.16  | From (113)(113) and (100) follows:
% 6.56/2.16  | (118) relation_of2_as_subset(all_0_7_7, all_0_8_8, all_0_8_8)
% 6.56/2.16  |
% 6.56/2.16  | From (113)(113) and (101) follows:
% 6.56/2.16  | (119) quasi_total(all_0_7_7, all_0_8_8, all_0_8_8)
% 6.56/2.16  |
% 6.56/2.16  | From (115) and (94) follows:
% 6.56/2.16  | (120) function(all_0_7_7)
% 6.56/2.16  |
% 6.56/2.16  | Instantiating formula (64) with all_0_7_7, all_0_8_8 and discharging atoms identity_as_relation_of(all_0_8_8) = all_0_7_7, yields:
% 6.56/2.16  | (121) identity_relation(all_0_8_8) = all_0_7_7
% 6.56/2.16  |
% 6.56/2.16  | Instantiating formula (9) with all_39_1_35, all_0_8_8 and discharging atoms powerset(all_0_8_8) = all_39_1_35, yields:
% 6.56/2.16  | (122) empty(all_0_8_8) |  ? [v0] : (element(v0, all_39_1_35) &  ~ empty(v0))
% 6.56/2.16  |
% 6.56/2.16  | Instantiating formula (31) with all_0_7_7, all_0_8_8, all_0_8_8 and discharging atoms relation_of2_as_subset(all_0_7_7, all_0_8_8, all_0_8_8), yields:
% 6.56/2.16  | (123) relation_of2(all_0_7_7, all_0_8_8, all_0_8_8)
% 6.56/2.16  |
% 6.56/2.16  | Instantiating formula (59) with all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8, all_0_8_8 and discharging atoms apply_as_element(all_0_8_8, all_0_8_8, all_0_7_7, all_0_6_6) = all_0_5_5, element(all_0_6_6, all_0_8_8), quasi_total(all_0_7_7, all_0_8_8, all_0_8_8), function(all_0_7_7), relation_of2(all_0_7_7, all_0_8_8, all_0_8_8), yields:
% 6.56/2.16  | (124) apply(all_0_7_7, all_0_6_6) = all_0_5_5 | empty(all_0_8_8)
% 6.56/2.16  |
% 6.56/2.16  | Instantiating formula (26) with all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8, all_0_8_8 and discharging atoms apply_as_element(all_0_8_8, all_0_8_8, all_0_7_7, all_0_6_6) = all_0_5_5, element(all_0_6_6, all_0_8_8), quasi_total(all_0_7_7, all_0_8_8, all_0_8_8), function(all_0_7_7), relation_of2(all_0_7_7, all_0_8_8, all_0_8_8), yields:
% 6.56/2.16  | (125) empty(all_0_8_8) | element(all_0_5_5, all_0_8_8)
% 6.56/2.16  |
% 6.56/2.16  +-Applying beta-rule and splitting (89), into two cases.
% 6.56/2.16  |-Branch one:
% 6.56/2.16  | (126) empty(all_0_8_8)
% 6.56/2.16  |
% 6.56/2.16  	| Instantiating formula (80) with all_0_8_8 and discharging atoms empty(all_0_8_8), yields:
% 6.56/2.16  	| (127) all_0_8_8 = empty_set
% 6.56/2.16  	|
% 6.56/2.16  	| From (127) and (3) follows:
% 6.56/2.16  	| (128) the_carrier(all_0_9_9) = empty_set
% 6.56/2.16  	|
% 6.56/2.16  	| From (127) and (126) follows:
% 6.56/2.16  	| (39) empty(empty_set)
% 6.56/2.16  	|
% 6.56/2.16  	| Instantiating formula (56) with empty_set, all_0_9_9 and discharging atoms the_carrier(all_0_9_9) = empty_set, one_sorted_str(all_0_9_9), empty(empty_set),  ~ empty_carrier(all_0_9_9), yields:
% 6.56/2.16  	| (130) $false
% 6.56/2.16  	|
% 6.56/2.16  	|-The branch is then unsatisfiable
% 6.56/2.16  |-Branch two:
% 6.56/2.16  | (131)  ~ empty(all_0_8_8)
% 6.56/2.16  | (132) in(all_0_6_6, all_0_8_8)
% 6.56/2.16  |
% 6.56/2.16  	+-Applying beta-rule and splitting (125), into two cases.
% 6.56/2.16  	|-Branch one:
% 6.56/2.16  	| (126) empty(all_0_8_8)
% 6.56/2.16  	|
% 6.56/2.16  		| Using (126) and (131) yields:
% 6.56/2.16  		| (130) $false
% 6.56/2.16  		|
% 6.56/2.16  		|-The branch is then unsatisfiable
% 6.56/2.16  	|-Branch two:
% 6.56/2.16  	| (131)  ~ empty(all_0_8_8)
% 6.56/2.16  	| (136) element(all_0_5_5, all_0_8_8)
% 6.56/2.16  	|
% 6.56/2.16  		+-Applying beta-rule and splitting (122), into two cases.
% 6.56/2.16  		|-Branch one:
% 6.56/2.16  		| (126) empty(all_0_8_8)
% 6.56/2.16  		|
% 6.56/2.16  			| Using (126) and (131) yields:
% 6.56/2.16  			| (130) $false
% 6.56/2.16  			|
% 6.56/2.16  			|-The branch is then unsatisfiable
% 6.56/2.16  		|-Branch two:
% 6.56/2.16  		| (131)  ~ empty(all_0_8_8)
% 6.56/2.16  		| (140)  ? [v0] : (element(v0, all_39_1_35) &  ~ empty(v0))
% 6.56/2.16  		|
% 6.56/2.16  			+-Applying beta-rule and splitting (124), into two cases.
% 6.56/2.16  			|-Branch one:
% 6.56/2.16  			| (126) empty(all_0_8_8)
% 6.56/2.16  			|
% 6.56/2.16  				| Using (126) and (131) yields:
% 6.56/2.16  				| (130) $false
% 6.56/2.16  				|
% 6.56/2.16  				|-The branch is then unsatisfiable
% 6.56/2.16  			|-Branch two:
% 6.56/2.16  			| (131)  ~ empty(all_0_8_8)
% 6.56/2.16  			| (144) apply(all_0_7_7, all_0_6_6) = all_0_5_5
% 6.56/2.16  			|
% 6.56/2.16  				| Instantiating formula (17) with all_0_5_5, all_0_7_7, all_0_6_6, all_0_8_8 and discharging atoms apply(all_0_7_7, all_0_6_6) = all_0_5_5, identity_relation(all_0_8_8) = all_0_7_7, in(all_0_6_6, all_0_8_8), yields:
% 6.56/2.16  				| (145) all_0_5_5 = all_0_6_6
% 6.56/2.16  				|
% 6.56/2.16  				| Equations (145) can reduce 47 to:
% 6.56/2.16  				| (146) $false
% 6.56/2.16  				|
% 6.56/2.16  				|-The branch is then unsatisfiable
% 6.56/2.16  % SZS output end Proof for theBenchmark
% 6.56/2.16  
% 6.56/2.16  1570ms
%------------------------------------------------------------------------------