TSTP Solution File: SEU343+1 by E---3.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E---3.1
% Problem  : SEU343+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 2400s
% WCLimit  : 300s
% DateTime : Tue Oct 10 19:26:04 EDT 2023

% Result   : Theorem 0.45s 0.56s
% Output   : CNFRefutation 0.45s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :   14
% Syntax   : Number of formulae    :   86 (  14 unt;   0 def)
%            Number of atoms       :  315 (  74 equ)
%            Maximal formula atoms :   32 (   3 avg)
%            Number of connectives :  399 ( 170   ~; 155   |;  46   &)
%                                         (   2 <=>;  26  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   5 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :   13 (  11 usr;   1 prp; 0-3 aty)
%            Number of functors    :   19 (  19 usr;   3 con; 0-6 aty)
%            Number of variables   :  169 (   4 sgn;  82   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(d2_lattices,axiom,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & meet_semilatt_str(X1) )
     => ! [X2] :
          ( element(X2,the_carrier(X1))
         => ! [X3] :
              ( element(X3,the_carrier(X1))
             => meet(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_meet(X1),X2,X3) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',d2_lattices) ).

fof(d1_lattice3,axiom,
    ! [X1,X2] :
      ( ( strict_latt_str(X2)
        & latt_str(X2) )
     => ( X2 = boole_lattice(X1)
      <=> ( the_carrier(X2) = powerset(X1)
          & ! [X3] :
              ( element(X3,powerset(X1))
             => ! [X4] :
                  ( element(X4,powerset(X1))
                 => ( apply_binary(the_L_join(X2),X3,X4) = subset_union2(X1,X3,X4)
                    & apply_binary(the_L_meet(X2),X3,X4) = subset_intersection2(X1,X3,X4) ) ) ) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',d1_lattice3) ).

fof(dt_k1_lattice3,axiom,
    ! [X1] :
      ( strict_latt_str(boole_lattice(X1))
      & latt_str(boole_lattice(X1)) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',dt_k1_lattice3) ).

fof(fc1_lattice3,axiom,
    ! [X1] :
      ( ~ empty_carrier(boole_lattice(X1))
      & strict_latt_str(boole_lattice(X1)) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',fc1_lattice3) ).

fof(redefinition_k2_binop_1,axiom,
    ! [X1,X2,X3,X4,X5,X6] :
      ( ( ~ empty(X1)
        & ~ empty(X2)
        & function(X4)
        & quasi_total(X4,cartesian_product2(X1,X2),X3)
        & relation_of2(X4,cartesian_product2(X1,X2),X3)
        & element(X5,X1)
        & element(X6,X2) )
     => apply_binary_as_element(X1,X2,X3,X4,X5,X6) = apply_binary(X4,X5,X6) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',redefinition_k2_binop_1) ).

fof(fc1_subset_1,axiom,
    ! [X1] : ~ empty(powerset(X1)),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',fc1_subset_1) ).

fof(d1_lattices,axiom,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & join_semilatt_str(X1) )
     => ! [X2] :
          ( element(X2,the_carrier(X1))
         => ! [X3] :
              ( element(X3,the_carrier(X1))
             => join(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_join(X1),X2,X3) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',d1_lattices) ).

fof(dt_u1_lattices,axiom,
    ! [X1] :
      ( meet_semilatt_str(X1)
     => ( function(the_L_meet(X1))
        & quasi_total(the_L_meet(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
        & relation_of2_as_subset(the_L_meet(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1)) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',dt_u1_lattices) ).

fof(redefinition_m2_relset_1,axiom,
    ! [X1,X2,X3] :
      ( relation_of2_as_subset(X3,X1,X2)
    <=> relation_of2(X3,X1,X2) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',redefinition_m2_relset_1) ).

fof(dt_u2_lattices,axiom,
    ! [X1] :
      ( join_semilatt_str(X1)
     => ( function(the_L_join(X1))
        & quasi_total(the_L_join(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
        & relation_of2_as_subset(the_L_join(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1)) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',dt_u2_lattices) ).

fof(t1_lattice3,conjecture,
    ! [X1,X2] :
      ( element(X2,the_carrier(boole_lattice(X1)))
     => ! [X3] :
          ( element(X3,the_carrier(boole_lattice(X1)))
         => ( join(boole_lattice(X1),X2,X3) = set_union2(X2,X3)
            & meet(boole_lattice(X1),X2,X3) = set_intersection2(X2,X3) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',t1_lattice3) ).

fof(dt_l3_lattices,axiom,
    ! [X1] :
      ( latt_str(X1)
     => ( meet_semilatt_str(X1)
        & join_semilatt_str(X1) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',dt_l3_lattices) ).

fof(redefinition_k5_subset_1,axiom,
    ! [X1,X2,X3] :
      ( ( element(X2,powerset(X1))
        & element(X3,powerset(X1)) )
     => subset_intersection2(X1,X2,X3) = set_intersection2(X2,X3) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',redefinition_k5_subset_1) ).

fof(redefinition_k4_subset_1,axiom,
    ! [X1,X2,X3] :
      ( ( element(X2,powerset(X1))
        & element(X3,powerset(X1)) )
     => subset_union2(X1,X2,X3) = set_union2(X2,X3) ),
    file('/export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p',redefinition_k4_subset_1) ).

fof(c_0_14,plain,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & meet_semilatt_str(X1) )
     => ! [X2] :
          ( element(X2,the_carrier(X1))
         => ! [X3] :
              ( element(X3,the_carrier(X1))
             => meet(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_meet(X1),X2,X3) ) ) ),
    inference(fof_simplification,[status(thm)],[d2_lattices]) ).

fof(c_0_15,plain,
    ! [X23,X24,X25,X26] :
      ( ( the_carrier(X24) = powerset(X23)
        | X24 != boole_lattice(X23)
        | ~ strict_latt_str(X24)
        | ~ latt_str(X24) )
      & ( apply_binary(the_L_join(X24),X25,X26) = subset_union2(X23,X25,X26)
        | ~ element(X26,powerset(X23))
        | ~ element(X25,powerset(X23))
        | X24 != boole_lattice(X23)
        | ~ strict_latt_str(X24)
        | ~ latt_str(X24) )
      & ( apply_binary(the_L_meet(X24),X25,X26) = subset_intersection2(X23,X25,X26)
        | ~ element(X26,powerset(X23))
        | ~ element(X25,powerset(X23))
        | X24 != boole_lattice(X23)
        | ~ strict_latt_str(X24)
        | ~ latt_str(X24) )
      & ( element(esk4_2(X23,X24),powerset(X23))
        | the_carrier(X24) != powerset(X23)
        | X24 = boole_lattice(X23)
        | ~ strict_latt_str(X24)
        | ~ latt_str(X24) )
      & ( element(esk5_2(X23,X24),powerset(X23))
        | the_carrier(X24) != powerset(X23)
        | X24 = boole_lattice(X23)
        | ~ strict_latt_str(X24)
        | ~ latt_str(X24) )
      & ( apply_binary(the_L_join(X24),esk4_2(X23,X24),esk5_2(X23,X24)) != subset_union2(X23,esk4_2(X23,X24),esk5_2(X23,X24))
        | apply_binary(the_L_meet(X24),esk4_2(X23,X24),esk5_2(X23,X24)) != subset_intersection2(X23,esk4_2(X23,X24),esk5_2(X23,X24))
        | the_carrier(X24) != powerset(X23)
        | X24 = boole_lattice(X23)
        | ~ strict_latt_str(X24)
        | ~ latt_str(X24) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d1_lattice3])])])])]) ).

fof(c_0_16,plain,
    ! [X29] :
      ( strict_latt_str(boole_lattice(X29))
      & latt_str(boole_lattice(X29)) ),
    inference(variable_rename,[status(thm)],[dt_k1_lattice3]) ).

fof(c_0_17,plain,
    ! [X1] :
      ( ~ empty_carrier(boole_lattice(X1))
      & strict_latt_str(boole_lattice(X1)) ),
    inference(fof_simplification,[status(thm)],[fc1_lattice3]) ).

fof(c_0_18,plain,
    ! [X1,X2,X3,X4,X5,X6] :
      ( ( ~ empty(X1)
        & ~ empty(X2)
        & function(X4)
        & quasi_total(X4,cartesian_product2(X1,X2),X3)
        & relation_of2(X4,cartesian_product2(X1,X2),X3)
        & element(X5,X1)
        & element(X6,X2) )
     => apply_binary_as_element(X1,X2,X3,X4,X5,X6) = apply_binary(X4,X5,X6) ),
    inference(fof_simplification,[status(thm)],[redefinition_k2_binop_1]) ).

fof(c_0_19,plain,
    ! [X17,X18,X19] :
      ( empty_carrier(X17)
      | ~ meet_semilatt_str(X17)
      | ~ element(X18,the_carrier(X17))
      | ~ element(X19,the_carrier(X17))
      | meet(X17,X18,X19) = apply_binary_as_element(the_carrier(X17),the_carrier(X17),the_carrier(X17),the_L_meet(X17),X18,X19) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_14])])]) ).

cnf(c_0_20,plain,
    ( the_carrier(X1) = powerset(X2)
    | X1 != boole_lattice(X2)
    | ~ strict_latt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_15]) ).

cnf(c_0_21,plain,
    strict_latt_str(boole_lattice(X1)),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_22,plain,
    latt_str(boole_lattice(X1)),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

fof(c_0_23,plain,
    ! [X30] :
      ( ~ empty_carrier(boole_lattice(X30))
      & strict_latt_str(boole_lattice(X30)) ),
    inference(variable_rename,[status(thm)],[c_0_17]) ).

fof(c_0_24,plain,
    ! [X1] : ~ empty(powerset(X1)),
    inference(fof_simplification,[status(thm)],[fc1_subset_1]) ).

fof(c_0_25,plain,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & join_semilatt_str(X1) )
     => ! [X2] :
          ( element(X2,the_carrier(X1))
         => ! [X3] :
              ( element(X3,the_carrier(X1))
             => join(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_join(X1),X2,X3) ) ) ),
    inference(fof_simplification,[status(thm)],[d1_lattices]) ).

fof(c_0_26,plain,
    ! [X71,X72,X73,X74,X75,X76] :
      ( empty(X71)
      | empty(X72)
      | ~ function(X74)
      | ~ quasi_total(X74,cartesian_product2(X71,X72),X73)
      | ~ relation_of2(X74,cartesian_product2(X71,X72),X73)
      | ~ element(X75,X71)
      | ~ element(X76,X72)
      | apply_binary_as_element(X71,X72,X73,X74,X75,X76) = apply_binary(X74,X75,X76) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_18])]) ).

cnf(c_0_27,plain,
    ( empty_carrier(X1)
    | meet(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_meet(X1),X2,X3)
    | ~ meet_semilatt_str(X1)
    | ~ element(X2,the_carrier(X1))
    | ~ element(X3,the_carrier(X1)) ),
    inference(split_conjunct,[status(thm)],[c_0_19]) ).

cnf(c_0_28,plain,
    the_carrier(boole_lattice(X1)) = powerset(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(er,[status(thm)],[c_0_20]),c_0_21]),c_0_22])]) ).

cnf(c_0_29,plain,
    ~ empty_carrier(boole_lattice(X1)),
    inference(split_conjunct,[status(thm)],[c_0_23]) ).

fof(c_0_30,plain,
    ! [X62] : ~ empty(powerset(X62)),
    inference(variable_rename,[status(thm)],[c_0_24]) ).

fof(c_0_31,plain,
    ! [X78] :
      ( ( function(the_L_meet(X78))
        | ~ meet_semilatt_str(X78) )
      & ( quasi_total(the_L_meet(X78),cartesian_product2(the_carrier(X78),the_carrier(X78)),the_carrier(X78))
        | ~ meet_semilatt_str(X78) )
      & ( relation_of2_as_subset(the_L_meet(X78),cartesian_product2(the_carrier(X78),the_carrier(X78)),the_carrier(X78))
        | ~ meet_semilatt_str(X78) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[dt_u1_lattices])])]) ).

fof(c_0_32,plain,
    ! [X104,X105,X106] :
      ( ( ~ relation_of2_as_subset(X106,X104,X105)
        | relation_of2(X106,X104,X105) )
      & ( ~ relation_of2(X106,X104,X105)
        | relation_of2_as_subset(X106,X104,X105) ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[redefinition_m2_relset_1])]) ).

fof(c_0_33,plain,
    ! [X41,X42,X43] :
      ( empty_carrier(X41)
      | ~ join_semilatt_str(X41)
      | ~ element(X42,the_carrier(X41))
      | ~ element(X43,the_carrier(X41))
      | join(X41,X42,X43) = apply_binary_as_element(the_carrier(X41),the_carrier(X41),the_carrier(X41),the_L_join(X41),X42,X43) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_25])])]) ).

cnf(c_0_34,plain,
    ( empty(X1)
    | empty(X2)
    | apply_binary_as_element(X1,X2,X4,X3,X5,X6) = apply_binary(X3,X5,X6)
    | ~ function(X3)
    | ~ quasi_total(X3,cartesian_product2(X1,X2),X4)
    | ~ relation_of2(X3,cartesian_product2(X1,X2),X4)
    | ~ element(X5,X1)
    | ~ element(X6,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

cnf(c_0_35,plain,
    ( apply_binary_as_element(powerset(X1),powerset(X1),powerset(X1),the_L_meet(boole_lattice(X1)),X2,X3) = meet(boole_lattice(X1),X2,X3)
    | ~ meet_semilatt_str(boole_lattice(X1))
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_27,c_0_28]),c_0_29]) ).

cnf(c_0_36,plain,
    ~ empty(powerset(X1)),
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

cnf(c_0_37,plain,
    ( function(the_L_meet(X1))
    | ~ meet_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_38,plain,
    ( quasi_total(the_L_meet(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ meet_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_39,plain,
    ( relation_of2(X1,X2,X3)
    | ~ relation_of2_as_subset(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_32]) ).

cnf(c_0_40,plain,
    ( relation_of2_as_subset(the_L_meet(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ meet_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_41,plain,
    ( empty_carrier(X1)
    | join(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_join(X1),X2,X3)
    | ~ join_semilatt_str(X1)
    | ~ element(X2,the_carrier(X1))
    | ~ element(X3,the_carrier(X1)) ),
    inference(split_conjunct,[status(thm)],[c_0_33]) ).

fof(c_0_42,plain,
    ! [X92] :
      ( ( function(the_L_join(X92))
        | ~ join_semilatt_str(X92) )
      & ( quasi_total(the_L_join(X92),cartesian_product2(the_carrier(X92),the_carrier(X92)),the_carrier(X92))
        | ~ join_semilatt_str(X92) )
      & ( relation_of2_as_subset(the_L_join(X92),cartesian_product2(the_carrier(X92),the_carrier(X92)),the_carrier(X92))
        | ~ join_semilatt_str(X92) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[dt_u2_lattices])])]) ).

cnf(c_0_43,plain,
    ( apply_binary(the_L_meet(boole_lattice(X1)),X2,X3) = meet(boole_lattice(X1),X2,X3)
    | ~ relation_of2(the_L_meet(boole_lattice(X1)),cartesian_product2(powerset(X1),powerset(X1)),powerset(X1))
    | ~ quasi_total(the_L_meet(boole_lattice(X1)),cartesian_product2(powerset(X1),powerset(X1)),powerset(X1))
    | ~ meet_semilatt_str(boole_lattice(X1))
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(csr,[status(thm)],[inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_34,c_0_35]),c_0_36]),c_0_37]) ).

cnf(c_0_44,plain,
    ( quasi_total(the_L_meet(boole_lattice(X1)),cartesian_product2(powerset(X1),powerset(X1)),powerset(X1))
    | ~ meet_semilatt_str(boole_lattice(X1)) ),
    inference(spm,[status(thm)],[c_0_38,c_0_28]) ).

cnf(c_0_45,plain,
    ( relation_of2(the_L_meet(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ meet_semilatt_str(X1) ),
    inference(spm,[status(thm)],[c_0_39,c_0_40]) ).

fof(c_0_46,negated_conjecture,
    ~ ! [X1,X2] :
        ( element(X2,the_carrier(boole_lattice(X1)))
       => ! [X3] :
            ( element(X3,the_carrier(boole_lattice(X1)))
           => ( join(boole_lattice(X1),X2,X3) = set_union2(X2,X3)
              & meet(boole_lattice(X1),X2,X3) = set_intersection2(X2,X3) ) ) ),
    inference(assume_negation,[status(cth)],[t1_lattice3]) ).

cnf(c_0_47,plain,
    ( apply_binary_as_element(powerset(X1),powerset(X1),powerset(X1),the_L_join(boole_lattice(X1)),X2,X3) = join(boole_lattice(X1),X2,X3)
    | ~ join_semilatt_str(boole_lattice(X1))
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_41,c_0_28]),c_0_29]) ).

cnf(c_0_48,plain,
    ( function(the_L_join(X1))
    | ~ join_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

cnf(c_0_49,plain,
    ( quasi_total(the_L_join(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ join_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

cnf(c_0_50,plain,
    ( relation_of2_as_subset(the_L_join(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ join_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

cnf(c_0_51,plain,
    ( apply_binary(the_L_meet(X1),X2,X3) = subset_intersection2(X4,X2,X3)
    | ~ element(X3,powerset(X4))
    | ~ element(X2,powerset(X4))
    | X1 != boole_lattice(X4)
    | ~ strict_latt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_15]) ).

cnf(c_0_52,plain,
    ( apply_binary(the_L_meet(boole_lattice(X1)),X2,X3) = meet(boole_lattice(X1),X2,X3)
    | ~ relation_of2(the_L_meet(boole_lattice(X1)),cartesian_product2(powerset(X1),powerset(X1)),powerset(X1))
    | ~ meet_semilatt_str(boole_lattice(X1))
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(spm,[status(thm)],[c_0_43,c_0_44]) ).

cnf(c_0_53,plain,
    ( relation_of2(the_L_meet(boole_lattice(X1)),cartesian_product2(powerset(X1),powerset(X1)),powerset(X1))
    | ~ meet_semilatt_str(boole_lattice(X1)) ),
    inference(spm,[status(thm)],[c_0_45,c_0_28]) ).

fof(c_0_54,negated_conjecture,
    ( element(esk2_0,the_carrier(boole_lattice(esk1_0)))
    & element(esk3_0,the_carrier(boole_lattice(esk1_0)))
    & ( join(boole_lattice(esk1_0),esk2_0,esk3_0) != set_union2(esk2_0,esk3_0)
      | meet(boole_lattice(esk1_0),esk2_0,esk3_0) != set_intersection2(esk2_0,esk3_0) ) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_46])])]) ).

cnf(c_0_55,plain,
    ( apply_binary(the_L_join(boole_lattice(X1)),X2,X3) = join(boole_lattice(X1),X2,X3)
    | ~ relation_of2(the_L_join(boole_lattice(X1)),cartesian_product2(powerset(X1),powerset(X1)),powerset(X1))
    | ~ quasi_total(the_L_join(boole_lattice(X1)),cartesian_product2(powerset(X1),powerset(X1)),powerset(X1))
    | ~ join_semilatt_str(boole_lattice(X1))
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(csr,[status(thm)],[inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_34,c_0_47]),c_0_36]),c_0_48]) ).

cnf(c_0_56,plain,
    ( quasi_total(the_L_join(boole_lattice(X1)),cartesian_product2(powerset(X1),powerset(X1)),powerset(X1))
    | ~ join_semilatt_str(boole_lattice(X1)) ),
    inference(spm,[status(thm)],[c_0_49,c_0_28]) ).

cnf(c_0_57,plain,
    ( relation_of2(the_L_join(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ join_semilatt_str(X1) ),
    inference(spm,[status(thm)],[c_0_39,c_0_50]) ).

cnf(c_0_58,plain,
    ( apply_binary(the_L_meet(boole_lattice(X1)),X2,X3) = subset_intersection2(X1,X2,X3)
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(er,[status(thm)],[c_0_51]),c_0_21]),c_0_22])]) ).

cnf(c_0_59,plain,
    ( apply_binary(the_L_meet(boole_lattice(X1)),X2,X3) = meet(boole_lattice(X1),X2,X3)
    | ~ meet_semilatt_str(boole_lattice(X1))
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(spm,[status(thm)],[c_0_52,c_0_53]) ).

cnf(c_0_60,negated_conjecture,
    element(esk3_0,the_carrier(boole_lattice(esk1_0))),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

cnf(c_0_61,negated_conjecture,
    element(esk2_0,the_carrier(boole_lattice(esk1_0))),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

cnf(c_0_62,plain,
    ( apply_binary(the_L_join(boole_lattice(X1)),X2,X3) = join(boole_lattice(X1),X2,X3)
    | ~ relation_of2(the_L_join(boole_lattice(X1)),cartesian_product2(powerset(X1),powerset(X1)),powerset(X1))
    | ~ join_semilatt_str(boole_lattice(X1))
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(spm,[status(thm)],[c_0_55,c_0_56]) ).

cnf(c_0_63,plain,
    ( relation_of2(the_L_join(boole_lattice(X1)),cartesian_product2(powerset(X1),powerset(X1)),powerset(X1))
    | ~ join_semilatt_str(boole_lattice(X1)) ),
    inference(spm,[status(thm)],[c_0_57,c_0_28]) ).

cnf(c_0_64,plain,
    ( apply_binary(the_L_join(X1),X2,X3) = subset_union2(X4,X2,X3)
    | ~ element(X3,powerset(X4))
    | ~ element(X2,powerset(X4))
    | X1 != boole_lattice(X4)
    | ~ strict_latt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_15]) ).

cnf(c_0_65,negated_conjecture,
    ( join(boole_lattice(esk1_0),esk2_0,esk3_0) != set_union2(esk2_0,esk3_0)
    | meet(boole_lattice(esk1_0),esk2_0,esk3_0) != set_intersection2(esk2_0,esk3_0) ),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

cnf(c_0_66,plain,
    ( meet(boole_lattice(X1),X2,X3) = subset_intersection2(X1,X2,X3)
    | ~ meet_semilatt_str(boole_lattice(X1))
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(spm,[status(thm)],[c_0_58,c_0_59]) ).

cnf(c_0_67,negated_conjecture,
    element(esk3_0,powerset(esk1_0)),
    inference(rw,[status(thm)],[c_0_60,c_0_28]) ).

cnf(c_0_68,negated_conjecture,
    element(esk2_0,powerset(esk1_0)),
    inference(rw,[status(thm)],[c_0_61,c_0_28]) ).

cnf(c_0_69,plain,
    ( apply_binary(the_L_join(boole_lattice(X1)),X2,X3) = join(boole_lattice(X1),X2,X3)
    | ~ join_semilatt_str(boole_lattice(X1))
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(spm,[status(thm)],[c_0_62,c_0_63]) ).

cnf(c_0_70,plain,
    ( apply_binary(the_L_join(boole_lattice(X1)),X2,X3) = subset_union2(X1,X2,X3)
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(er,[status(thm)],[c_0_64]),c_0_21]),c_0_22])]) ).

cnf(c_0_71,negated_conjecture,
    ( join(boole_lattice(esk1_0),esk2_0,esk3_0) != set_union2(esk2_0,esk3_0)
    | set_intersection2(esk2_0,esk3_0) != subset_intersection2(esk1_0,esk2_0,esk3_0)
    | ~ meet_semilatt_str(boole_lattice(esk1_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_65,c_0_66]),c_0_67]),c_0_68])]) ).

cnf(c_0_72,plain,
    ( join(boole_lattice(X1),X2,X3) = subset_union2(X1,X2,X3)
    | ~ join_semilatt_str(boole_lattice(X1))
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(spm,[status(thm)],[c_0_69,c_0_70]) ).

fof(c_0_73,plain,
    ! [X80] :
      ( ( meet_semilatt_str(X80)
        | ~ latt_str(X80) )
      & ( join_semilatt_str(X80)
        | ~ latt_str(X80) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[dt_l3_lattices])])]) ).

cnf(c_0_74,negated_conjecture,
    ( subset_union2(esk1_0,esk2_0,esk3_0) != set_union2(esk2_0,esk3_0)
    | set_intersection2(esk2_0,esk3_0) != subset_intersection2(esk1_0,esk2_0,esk3_0)
    | ~ meet_semilatt_str(boole_lattice(esk1_0))
    | ~ join_semilatt_str(boole_lattice(esk1_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_71,c_0_72]),c_0_67]),c_0_68])]) ).

cnf(c_0_75,plain,
    ( meet_semilatt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_73]) ).

cnf(c_0_76,negated_conjecture,
    ( subset_union2(esk1_0,esk2_0,esk3_0) != set_union2(esk2_0,esk3_0)
    | set_intersection2(esk2_0,esk3_0) != subset_intersection2(esk1_0,esk2_0,esk3_0)
    | ~ join_semilatt_str(boole_lattice(esk1_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_74,c_0_75]),c_0_22])]) ).

cnf(c_0_77,plain,
    ( join_semilatt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_73]) ).

fof(c_0_78,plain,
    ! [X13,X14,X15] :
      ( ~ element(X14,powerset(X13))
      | ~ element(X15,powerset(X13))
      | subset_intersection2(X13,X14,X15) = set_intersection2(X14,X15) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[redefinition_k5_subset_1])]) ).

cnf(c_0_79,negated_conjecture,
    ( subset_union2(esk1_0,esk2_0,esk3_0) != set_union2(esk2_0,esk3_0)
    | set_intersection2(esk2_0,esk3_0) != subset_intersection2(esk1_0,esk2_0,esk3_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_76,c_0_77]),c_0_22])]) ).

cnf(c_0_80,plain,
    ( subset_intersection2(X2,X1,X3) = set_intersection2(X1,X3)
    | ~ element(X1,powerset(X2))
    | ~ element(X3,powerset(X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_78]) ).

cnf(c_0_81,negated_conjecture,
    ( subset_intersection2(X1,esk2_0,esk3_0) != subset_intersection2(esk1_0,esk2_0,esk3_0)
    | subset_union2(esk1_0,esk2_0,esk3_0) != set_union2(esk2_0,esk3_0)
    | ~ element(esk3_0,powerset(X1))
    | ~ element(esk2_0,powerset(X1)) ),
    inference(spm,[status(thm)],[c_0_79,c_0_80]) ).

fof(c_0_82,plain,
    ! [X38,X39,X40] :
      ( ~ element(X39,powerset(X38))
      | ~ element(X40,powerset(X38))
      | subset_union2(X38,X39,X40) = set_union2(X39,X40) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[redefinition_k4_subset_1])]) ).

cnf(c_0_83,negated_conjecture,
    subset_union2(esk1_0,esk2_0,esk3_0) != set_union2(esk2_0,esk3_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(er,[status(thm)],[c_0_81]),c_0_67]),c_0_68])]) ).

cnf(c_0_84,plain,
    ( subset_union2(X2,X1,X3) = set_union2(X1,X3)
    | ~ element(X1,powerset(X2))
    | ~ element(X3,powerset(X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_82]) ).

cnf(c_0_85,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_83,c_0_84]),c_0_67]),c_0_68])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.14  % Problem    : SEU343+1 : TPTP v8.1.2. Released v3.3.0.
% 0.15/0.15  % Command    : run_E %s %d THM
% 0.15/0.36  % Computer : n022.cluster.edu
% 0.15/0.36  % Model    : x86_64 x86_64
% 0.15/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.36  % Memory   : 8042.1875MB
% 0.15/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.36  % CPULimit   : 2400
% 0.15/0.36  % WCLimit    : 300
% 0.15/0.36  % DateTime   : Mon Oct  2 09:11:39 EDT 2023
% 0.23/0.36  % CPUTime    : 
% 0.23/0.51  Running first-order theorem proving
% 0.23/0.51  Running: /export/starexec/sandbox/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --auto-schedule=8 --cpu-limit=300 /export/starexec/sandbox/tmp/tmp.RV1Cp63ext/E---3.1_21755.p
% 0.45/0.56  # Version: 3.1pre001
% 0.45/0.56  # Preprocessing class: FSLSSMSSSSSNFFN.
% 0.45/0.56  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.45/0.56  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 0.45/0.56  # Starting new_bool_3 with 300s (1) cores
% 0.45/0.56  # Starting new_bool_1 with 300s (1) cores
% 0.45/0.56  # Starting sh5l with 300s (1) cores
% 0.45/0.56  # new_bool_3 with pid 21911 completed with status 0
% 0.45/0.56  # Result found by new_bool_3
% 0.45/0.56  # Preprocessing class: FSLSSMSSSSSNFFN.
% 0.45/0.56  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.45/0.56  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 0.45/0.56  # Starting new_bool_3 with 300s (1) cores
% 0.45/0.56  # SinE strategy is GSinE(CountFormulas,hypos,1.5,,3,20000,1.0)
% 0.45/0.56  # Search class: FGHSM-FFMM32-SFFFFFNN
% 0.45/0.56  # Scheduled 6 strats onto 1 cores with 300 seconds (300 total)
% 0.45/0.56  # Starting G-E--_301_C18_F1_URBAN_S0Y with 139s (1) cores
% 0.45/0.56  # G-E--_301_C18_F1_URBAN_S0Y with pid 21923 completed with status 0
% 0.45/0.56  # Result found by G-E--_301_C18_F1_URBAN_S0Y
% 0.45/0.56  # Preprocessing class: FSLSSMSSSSSNFFN.
% 0.45/0.56  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.45/0.56  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 0.45/0.56  # Starting new_bool_3 with 300s (1) cores
% 0.45/0.56  # SinE strategy is GSinE(CountFormulas,hypos,1.5,,3,20000,1.0)
% 0.45/0.56  # Search class: FGHSM-FFMM32-SFFFFFNN
% 0.45/0.56  # Scheduled 6 strats onto 1 cores with 300 seconds (300 total)
% 0.45/0.56  # Starting G-E--_301_C18_F1_URBAN_S0Y with 139s (1) cores
% 0.45/0.56  # Preprocessing time       : 0.008 s
% 0.45/0.56  
% 0.45/0.56  # Proof found!
% 0.45/0.56  # SZS status Theorem
% 0.45/0.56  # SZS output start CNFRefutation
% See solution above
% 0.45/0.56  # Parsed axioms                        : 86
% 0.45/0.56  # Removed by relevancy pruning/SinE    : 28
% 0.45/0.56  # Initial clauses                      : 84
% 0.45/0.56  # Removed in clause preprocessing      : 0
% 0.45/0.56  # Initial clauses in saturation        : 84
% 0.45/0.56  # Processed clauses                    : 255
% 0.45/0.56  # ...of these trivial                  : 5
% 0.45/0.56  # ...subsumed                          : 76
% 0.45/0.56  # ...remaining for further processing  : 174
% 0.45/0.56  # Other redundant clauses eliminated   : 0
% 0.45/0.56  # Clauses deleted for lack of memory   : 0
% 0.45/0.56  # Backward-subsumed                    : 20
% 0.45/0.56  # Backward-rewritten                   : 7
% 0.45/0.56  # Generated clauses                    : 339
% 0.45/0.56  # ...of the previous two non-redundant : 301
% 0.45/0.56  # ...aggressively subsumed             : 0
% 0.45/0.56  # Contextual simplify-reflections      : 33
% 0.45/0.56  # Paramodulations                      : 335
% 0.45/0.56  # Factorizations                       : 0
% 0.45/0.56  # NegExts                              : 0
% 0.45/0.56  # Equation resolutions                 : 4
% 0.45/0.56  # Total rewrite steps                  : 118
% 0.45/0.56  # Propositional unsat checks           : 0
% 0.45/0.56  #    Propositional check models        : 0
% 0.45/0.56  #    Propositional check unsatisfiable : 0
% 0.45/0.56  #    Propositional clauses             : 0
% 0.45/0.56  #    Propositional clauses after purity: 0
% 0.45/0.56  #    Propositional unsat core size     : 0
% 0.45/0.56  #    Propositional preprocessing time  : 0.000
% 0.45/0.56  #    Propositional encoding time       : 0.000
% 0.45/0.56  #    Propositional solver time         : 0.000
% 0.45/0.56  #    Success case prop preproc time    : 0.000
% 0.45/0.56  #    Success case prop encoding time   : 0.000
% 0.45/0.56  #    Success case prop solver time     : 0.000
% 0.45/0.56  # Current number of processed clauses  : 147
% 0.45/0.56  #    Positive orientable unit clauses  : 30
% 0.45/0.56  #    Positive unorientable unit clauses: 2
% 0.45/0.56  #    Negative unit clauses             : 8
% 0.45/0.56  #    Non-unit-clauses                  : 107
% 0.45/0.56  # Current number of unprocessed clauses: 96
% 0.45/0.56  # ...number of literals in the above   : 566
% 0.45/0.56  # Current number of archived formulas  : 0
% 0.45/0.56  # Current number of archived clauses   : 27
% 0.45/0.56  # Clause-clause subsumption calls (NU) : 4883
% 0.45/0.56  # Rec. Clause-clause subsumption calls : 1591
% 0.45/0.56  # Non-unit clause-clause subsumptions  : 124
% 0.45/0.56  # Unit Clause-clause subsumption calls : 407
% 0.45/0.56  # Rewrite failures with RHS unbound    : 0
% 0.45/0.56  # BW rewrite match attempts            : 23
% 0.45/0.56  # BW rewrite match successes           : 20
% 0.45/0.56  # Condensation attempts                : 0
% 0.45/0.56  # Condensation successes               : 0
% 0.45/0.56  # Termbank termtop insertions          : 13493
% 0.45/0.56  
% 0.45/0.56  # -------------------------------------------------
% 0.45/0.56  # User time                : 0.029 s
% 0.45/0.56  # System time              : 0.009 s
% 0.45/0.56  # Total time               : 0.038 s
% 0.45/0.56  # Maximum resident set size: 2080 pages
% 0.45/0.56  
% 0.45/0.56  # -------------------------------------------------
% 0.45/0.56  # User time                : 0.032 s
% 0.45/0.56  # System time              : 0.011 s
% 0.45/0.56  # Total time               : 0.043 s
% 0.45/0.56  # Maximum resident set size: 1760 pages
% 0.45/0.56  % E---3.1 exiting
% 0.45/0.56  % E---3.1 exiting
%------------------------------------------------------------------------------