TSTP Solution File: SEU343+1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : SEU343+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 16:24:36 EDT 2023

% Result   : Theorem 56.98s 57.06s
% Output   : CNFRefutation 56.98s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :   69
% Syntax   : Number of formulae    :  130 (  14 unt;  55 typ;   0 def)
%            Number of atoms       :  277 (  64 equ)
%            Maximal formula atoms :   32 (   3 avg)
%            Number of connectives :  342 ( 140   ~; 128   |;  46   &)
%                                         (   2 <=>;  26  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   5 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   78 (  42   >;  36   *;   0   +;   0  <<)
%            Number of predicates  :   17 (  15 usr;   1 prp; 0-3 aty)
%            Number of functors    :   40 (  40 usr;  13 con; 0-6 aty)
%            Number of variables   :  140 (   4 sgn;  82   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    latt_str: $i > $o ).

tff(decl_23,type,
    strict_latt_str: $i > $o ).

tff(decl_24,type,
    the_carrier: $i > $i ).

tff(decl_25,type,
    the_L_join: $i > $i ).

tff(decl_26,type,
    the_L_meet: $i > $i ).

tff(decl_27,type,
    latt_str_of: ( $i * $i * $i ) > $i ).

tff(decl_28,type,
    in: ( $i * $i ) > $o ).

tff(decl_29,type,
    cartesian_product2: ( $i * $i ) > $i ).

tff(decl_30,type,
    powerset: $i > $i ).

tff(decl_31,type,
    element: ( $i * $i ) > $o ).

tff(decl_32,type,
    relation: $i > $o ).

tff(decl_33,type,
    unordered_pair: ( $i * $i ) > $i ).

tff(decl_34,type,
    set_union2: ( $i * $i ) > $i ).

tff(decl_35,type,
    set_intersection2: ( $i * $i ) > $i ).

tff(decl_36,type,
    subset_union2: ( $i * $i * $i ) > $i ).

tff(decl_37,type,
    subset_intersection2: ( $i * $i * $i ) > $i ).

tff(decl_38,type,
    function: $i > $o ).

tff(decl_39,type,
    apply_binary: ( $i * $i * $i ) > $i ).

tff(decl_40,type,
    ordered_pair: ( $i * $i ) > $i ).

tff(decl_41,type,
    apply: ( $i * $i ) > $i ).

tff(decl_42,type,
    boole_lattice: $i > $i ).

tff(decl_43,type,
    empty_carrier: $i > $o ).

tff(decl_44,type,
    join_semilatt_str: $i > $o ).

tff(decl_45,type,
    join: ( $i * $i * $i ) > $i ).

tff(decl_46,type,
    apply_binary_as_element: ( $i * $i * $i * $i * $i * $i ) > $i ).

tff(decl_47,type,
    meet_semilatt_str: $i > $o ).

tff(decl_48,type,
    meet: ( $i * $i * $i ) > $i ).

tff(decl_49,type,
    singleton: $i > $i ).

tff(decl_50,type,
    quasi_total: ( $i * $i * $i ) > $o ).

tff(decl_51,type,
    relation_of2: ( $i * $i * $i ) > $o ).

tff(decl_52,type,
    empty: $i > $o ).

tff(decl_53,type,
    one_sorted_str: $i > $o ).

tff(decl_54,type,
    relation_of2_as_subset: ( $i * $i * $i ) > $o ).

tff(decl_55,type,
    empty_set: $i ).

tff(decl_56,type,
    subset: ( $i * $i ) > $o ).

tff(decl_57,type,
    esk1_2: ( $i * $i ) > $i ).

tff(decl_58,type,
    esk2_2: ( $i * $i ) > $i ).

tff(decl_59,type,
    esk3_0: $i ).

tff(decl_60,type,
    esk4_0: $i ).

tff(decl_61,type,
    esk5_0: $i ).

tff(decl_62,type,
    esk6_0: $i ).

tff(decl_63,type,
    esk7_2: ( $i * $i ) > $i ).

tff(decl_64,type,
    esk8_1: $i > $i ).

tff(decl_65,type,
    esk9_2: ( $i * $i ) > $i ).

tff(decl_66,type,
    esk10_1: $i > $i ).

tff(decl_67,type,
    esk11_0: $i ).

tff(decl_68,type,
    esk12_1: $i > $i ).

tff(decl_69,type,
    esk13_0: $i ).

tff(decl_70,type,
    esk14_0: $i ).

tff(decl_71,type,
    esk15_0: $i ).

tff(decl_72,type,
    esk16_1: $i > $i ).

tff(decl_73,type,
    esk17_0: $i ).

tff(decl_74,type,
    esk18_0: $i ).

tff(decl_75,type,
    esk19_0: $i ).

tff(decl_76,type,
    esk20_0: $i ).

fof(d2_lattices,axiom,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & meet_semilatt_str(X1) )
     => ! [X2] :
          ( element(X2,the_carrier(X1))
         => ! [X3] :
              ( element(X3,the_carrier(X1))
             => meet(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_meet(X1),X2,X3) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d2_lattices) ).

fof(redefinition_k2_binop_1,axiom,
    ! [X1,X2,X3,X4,X5,X6] :
      ( ( ~ empty(X1)
        & ~ empty(X2)
        & function(X4)
        & quasi_total(X4,cartesian_product2(X1,X2),X3)
        & relation_of2(X4,cartesian_product2(X1,X2),X3)
        & element(X5,X1)
        & element(X6,X2) )
     => apply_binary_as_element(X1,X2,X3,X4,X5,X6) = apply_binary(X4,X5,X6) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',redefinition_k2_binop_1) ).

fof(redefinition_m2_relset_1,axiom,
    ! [X1,X2,X3] :
      ( relation_of2_as_subset(X3,X1,X2)
    <=> relation_of2(X3,X1,X2) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',redefinition_m2_relset_1) ).

fof(dt_u1_lattices,axiom,
    ! [X1] :
      ( meet_semilatt_str(X1)
     => ( function(the_L_meet(X1))
        & quasi_total(the_L_meet(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
        & relation_of2_as_subset(the_L_meet(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1)) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',dt_u1_lattices) ).

fof(t1_lattice3,conjecture,
    ! [X1,X2] :
      ( element(X2,the_carrier(boole_lattice(X1)))
     => ! [X3] :
          ( element(X3,the_carrier(boole_lattice(X1)))
         => ( join(boole_lattice(X1),X2,X3) = set_union2(X2,X3)
            & meet(boole_lattice(X1),X2,X3) = set_intersection2(X2,X3) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t1_lattice3) ).

fof(d1_lattice3,axiom,
    ! [X1,X2] :
      ( ( strict_latt_str(X2)
        & latt_str(X2) )
     => ( X2 = boole_lattice(X1)
      <=> ( the_carrier(X2) = powerset(X1)
          & ! [X3] :
              ( element(X3,powerset(X1))
             => ! [X4] :
                  ( element(X4,powerset(X1))
                 => ( apply_binary(the_L_join(X2),X3,X4) = subset_union2(X1,X3,X4)
                    & apply_binary(the_L_meet(X2),X3,X4) = subset_intersection2(X1,X3,X4) ) ) ) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d1_lattice3) ).

fof(dt_k1_lattice3,axiom,
    ! [X1] :
      ( strict_latt_str(boole_lattice(X1))
      & latt_str(boole_lattice(X1)) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',dt_k1_lattice3) ).

fof(fc1_subset_1,axiom,
    ! [X1] : ~ empty(powerset(X1)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',fc1_subset_1) ).

fof(fc1_lattice3,axiom,
    ! [X1] :
      ( ~ empty_carrier(boole_lattice(X1))
      & strict_latt_str(boole_lattice(X1)) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',fc1_lattice3) ).

fof(d1_lattices,axiom,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & join_semilatt_str(X1) )
     => ! [X2] :
          ( element(X2,the_carrier(X1))
         => ! [X3] :
              ( element(X3,the_carrier(X1))
             => join(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_join(X1),X2,X3) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d1_lattices) ).

fof(dt_u2_lattices,axiom,
    ! [X1] :
      ( join_semilatt_str(X1)
     => ( function(the_L_join(X1))
        & quasi_total(the_L_join(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
        & relation_of2_as_subset(the_L_join(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1)) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',dt_u2_lattices) ).

fof(redefinition_k5_subset_1,axiom,
    ! [X1,X2,X3] :
      ( ( element(X2,powerset(X1))
        & element(X3,powerset(X1)) )
     => subset_intersection2(X1,X2,X3) = set_intersection2(X2,X3) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',redefinition_k5_subset_1) ).

fof(redefinition_k4_subset_1,axiom,
    ! [X1,X2,X3] :
      ( ( element(X2,powerset(X1))
        & element(X3,powerset(X1)) )
     => subset_union2(X1,X2,X3) = set_union2(X2,X3) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',redefinition_k4_subset_1) ).

fof(dt_l3_lattices,axiom,
    ! [X1] :
      ( latt_str(X1)
     => ( meet_semilatt_str(X1)
        & join_semilatt_str(X1) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',dt_l3_lattices) ).

fof(c_0_14,plain,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & meet_semilatt_str(X1) )
     => ! [X2] :
          ( element(X2,the_carrier(X1))
         => ! [X3] :
              ( element(X3,the_carrier(X1))
             => meet(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_meet(X1),X2,X3) ) ) ),
    inference(fof_simplification,[status(thm)],[d2_lattices]) ).

fof(c_0_15,plain,
    ! [X1,X2,X3,X4,X5,X6] :
      ( ( ~ empty(X1)
        & ~ empty(X2)
        & function(X4)
        & quasi_total(X4,cartesian_product2(X1,X2),X3)
        & relation_of2(X4,cartesian_product2(X1,X2),X3)
        & element(X5,X1)
        & element(X6,X2) )
     => apply_binary_as_element(X1,X2,X3,X4,X5,X6) = apply_binary(X4,X5,X6) ),
    inference(fof_simplification,[status(thm)],[redefinition_k2_binop_1]) ).

fof(c_0_16,plain,
    ! [X136,X137,X138] :
      ( ( ~ relation_of2_as_subset(X138,X136,X137)
        | relation_of2(X138,X136,X137) )
      & ( ~ relation_of2(X138,X136,X137)
        | relation_of2_as_subset(X138,X136,X137) ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[redefinition_m2_relset_1])]) ).

fof(c_0_17,plain,
    ! [X70] :
      ( ( function(the_L_meet(X70))
        | ~ meet_semilatt_str(X70) )
      & ( quasi_total(the_L_meet(X70),cartesian_product2(the_carrier(X70),the_carrier(X70)),the_carrier(X70))
        | ~ meet_semilatt_str(X70) )
      & ( relation_of2_as_subset(the_L_meet(X70),cartesian_product2(the_carrier(X70),the_carrier(X70)),the_carrier(X70))
        | ~ meet_semilatt_str(X70) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[dt_u1_lattices])])]) ).

fof(c_0_18,negated_conjecture,
    ~ ! [X1,X2] :
        ( element(X2,the_carrier(boole_lattice(X1)))
       => ! [X3] :
            ( element(X3,the_carrier(boole_lattice(X1)))
           => ( join(boole_lattice(X1),X2,X3) = set_union2(X2,X3)
              & meet(boole_lattice(X1),X2,X3) = set_intersection2(X2,X3) ) ) ),
    inference(assume_negation,[status(cth)],[t1_lattice3]) ).

fof(c_0_19,plain,
    ! [X28,X29,X30,X31] :
      ( ( the_carrier(X29) = powerset(X28)
        | X29 != boole_lattice(X28)
        | ~ strict_latt_str(X29)
        | ~ latt_str(X29) )
      & ( apply_binary(the_L_join(X29),X30,X31) = subset_union2(X28,X30,X31)
        | ~ element(X31,powerset(X28))
        | ~ element(X30,powerset(X28))
        | X29 != boole_lattice(X28)
        | ~ strict_latt_str(X29)
        | ~ latt_str(X29) )
      & ( apply_binary(the_L_meet(X29),X30,X31) = subset_intersection2(X28,X30,X31)
        | ~ element(X31,powerset(X28))
        | ~ element(X30,powerset(X28))
        | X29 != boole_lattice(X28)
        | ~ strict_latt_str(X29)
        | ~ latt_str(X29) )
      & ( element(esk1_2(X28,X29),powerset(X28))
        | the_carrier(X29) != powerset(X28)
        | X29 = boole_lattice(X28)
        | ~ strict_latt_str(X29)
        | ~ latt_str(X29) )
      & ( element(esk2_2(X28,X29),powerset(X28))
        | the_carrier(X29) != powerset(X28)
        | X29 = boole_lattice(X28)
        | ~ strict_latt_str(X29)
        | ~ latt_str(X29) )
      & ( apply_binary(the_L_join(X29),esk1_2(X28,X29),esk2_2(X28,X29)) != subset_union2(X28,esk1_2(X28,X29),esk2_2(X28,X29))
        | apply_binary(the_L_meet(X29),esk1_2(X28,X29),esk2_2(X28,X29)) != subset_intersection2(X28,esk1_2(X28,X29),esk2_2(X28,X29))
        | the_carrier(X29) != powerset(X28)
        | X29 = boole_lattice(X28)
        | ~ strict_latt_str(X29)
        | ~ latt_str(X29) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d1_lattice3])])])])]) ).

fof(c_0_20,plain,
    ! [X45] :
      ( strict_latt_str(boole_lattice(X45))
      & latt_str(boole_lattice(X45)) ),
    inference(variable_rename,[status(thm)],[dt_k1_lattice3]) ).

fof(c_0_21,plain,
    ! [X37,X38,X39] :
      ( empty_carrier(X37)
      | ~ meet_semilatt_str(X37)
      | ~ element(X38,the_carrier(X37))
      | ~ element(X39,the_carrier(X37))
      | meet(X37,X38,X39) = apply_binary_as_element(the_carrier(X37),the_carrier(X37),the_carrier(X37),the_L_meet(X37),X38,X39) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_14])])]) ).

fof(c_0_22,plain,
    ! [X124,X125,X126,X127,X128,X129] :
      ( empty(X124)
      | empty(X125)
      | ~ function(X127)
      | ~ quasi_total(X127,cartesian_product2(X124,X125),X126)
      | ~ relation_of2(X127,cartesian_product2(X124,X125),X126)
      | ~ element(X128,X124)
      | ~ element(X129,X125)
      | apply_binary_as_element(X124,X125,X126,X127,X128,X129) = apply_binary(X127,X128,X129) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_15])]) ).

cnf(c_0_23,plain,
    ( relation_of2(X1,X2,X3)
    | ~ relation_of2_as_subset(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_24,plain,
    ( relation_of2_as_subset(the_L_meet(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ meet_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_17]) ).

fof(c_0_25,negated_conjecture,
    ( element(esk19_0,the_carrier(boole_lattice(esk18_0)))
    & element(esk20_0,the_carrier(boole_lattice(esk18_0)))
    & ( join(boole_lattice(esk18_0),esk19_0,esk20_0) != set_union2(esk19_0,esk20_0)
      | meet(boole_lattice(esk18_0),esk19_0,esk20_0) != set_intersection2(esk19_0,esk20_0) ) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_18])])]) ).

cnf(c_0_26,plain,
    ( the_carrier(X1) = powerset(X2)
    | X1 != boole_lattice(X2)
    | ~ strict_latt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_19]) ).

cnf(c_0_27,plain,
    strict_latt_str(boole_lattice(X1)),
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

cnf(c_0_28,plain,
    latt_str(boole_lattice(X1)),
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

fof(c_0_29,plain,
    ! [X1] : ~ empty(powerset(X1)),
    inference(fof_simplification,[status(thm)],[fc1_subset_1]) ).

fof(c_0_30,plain,
    ! [X1] :
      ( ~ empty_carrier(boole_lattice(X1))
      & strict_latt_str(boole_lattice(X1)) ),
    inference(fof_simplification,[status(thm)],[fc1_lattice3]) ).

fof(c_0_31,plain,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & join_semilatt_str(X1) )
     => ! [X2] :
          ( element(X2,the_carrier(X1))
         => ! [X3] :
              ( element(X3,the_carrier(X1))
             => join(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_join(X1),X2,X3) ) ) ),
    inference(fof_simplification,[status(thm)],[d1_lattices]) ).

fof(c_0_32,plain,
    ! [X71] :
      ( ( function(the_L_join(X71))
        | ~ join_semilatt_str(X71) )
      & ( quasi_total(the_L_join(X71),cartesian_product2(the_carrier(X71),the_carrier(X71)),the_carrier(X71))
        | ~ join_semilatt_str(X71) )
      & ( relation_of2_as_subset(the_L_join(X71),cartesian_product2(the_carrier(X71),the_carrier(X71)),the_carrier(X71))
        | ~ join_semilatt_str(X71) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[dt_u2_lattices])])]) ).

cnf(c_0_33,plain,
    ( empty_carrier(X1)
    | meet(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_meet(X1),X2,X3)
    | ~ meet_semilatt_str(X1)
    | ~ element(X2,the_carrier(X1))
    | ~ element(X3,the_carrier(X1)) ),
    inference(split_conjunct,[status(thm)],[c_0_21]) ).

cnf(c_0_34,plain,
    ( empty(X1)
    | empty(X2)
    | apply_binary_as_element(X1,X2,X4,X3,X5,X6) = apply_binary(X3,X5,X6)
    | ~ function(X3)
    | ~ quasi_total(X3,cartesian_product2(X1,X2),X4)
    | ~ relation_of2(X3,cartesian_product2(X1,X2),X4)
    | ~ element(X5,X1)
    | ~ element(X6,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

cnf(c_0_35,plain,
    ( function(the_L_meet(X1))
    | ~ meet_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_17]) ).

cnf(c_0_36,plain,
    ( quasi_total(the_L_meet(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ meet_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_17]) ).

cnf(c_0_37,plain,
    ( relation_of2(the_L_meet(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ meet_semilatt_str(X1) ),
    inference(spm,[status(thm)],[c_0_23,c_0_24]) ).

cnf(c_0_38,negated_conjecture,
    element(esk20_0,the_carrier(boole_lattice(esk18_0))),
    inference(split_conjunct,[status(thm)],[c_0_25]) ).

cnf(c_0_39,plain,
    the_carrier(boole_lattice(X1)) = powerset(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(er,[status(thm)],[c_0_26]),c_0_27]),c_0_28])]) ).

cnf(c_0_40,negated_conjecture,
    element(esk19_0,the_carrier(boole_lattice(esk18_0))),
    inference(split_conjunct,[status(thm)],[c_0_25]) ).

fof(c_0_41,plain,
    ! [X86] : ~ empty(powerset(X86)),
    inference(variable_rename,[status(thm)],[c_0_29]) ).

fof(c_0_42,plain,
    ! [X84] :
      ( ~ empty_carrier(boole_lattice(X84))
      & strict_latt_str(boole_lattice(X84)) ),
    inference(variable_rename,[status(thm)],[c_0_30]) ).

fof(c_0_43,plain,
    ! [X34,X35,X36] :
      ( empty_carrier(X34)
      | ~ join_semilatt_str(X34)
      | ~ element(X35,the_carrier(X34))
      | ~ element(X36,the_carrier(X34))
      | join(X34,X35,X36) = apply_binary_as_element(the_carrier(X34),the_carrier(X34),the_carrier(X34),the_L_join(X34),X35,X36) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_31])])]) ).

cnf(c_0_44,plain,
    ( relation_of2_as_subset(the_L_join(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ join_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_32]) ).

cnf(c_0_45,negated_conjecture,
    ( join(boole_lattice(esk18_0),esk19_0,esk20_0) != set_union2(esk19_0,esk20_0)
    | meet(boole_lattice(esk18_0),esk19_0,esk20_0) != set_intersection2(esk19_0,esk20_0) ),
    inference(split_conjunct,[status(thm)],[c_0_25]) ).

cnf(c_0_46,plain,
    ( meet(X1,X2,X3) = apply_binary(the_L_meet(X1),X2,X3)
    | empty(the_carrier(X1))
    | empty_carrier(X1)
    | ~ meet_semilatt_str(X1)
    | ~ element(X3,the_carrier(X1))
    | ~ element(X2,the_carrier(X1)) ),
    inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_33,c_0_34]),c_0_35]),c_0_36]),c_0_37]) ).

cnf(c_0_47,negated_conjecture,
    element(esk20_0,powerset(esk18_0)),
    inference(rw,[status(thm)],[c_0_38,c_0_39]) ).

cnf(c_0_48,negated_conjecture,
    element(esk19_0,powerset(esk18_0)),
    inference(rw,[status(thm)],[c_0_40,c_0_39]) ).

cnf(c_0_49,plain,
    ~ empty(powerset(X1)),
    inference(split_conjunct,[status(thm)],[c_0_41]) ).

cnf(c_0_50,plain,
    ~ empty_carrier(boole_lattice(X1)),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

cnf(c_0_51,plain,
    ( empty_carrier(X1)
    | join(X1,X2,X3) = apply_binary_as_element(the_carrier(X1),the_carrier(X1),the_carrier(X1),the_L_join(X1),X2,X3)
    | ~ join_semilatt_str(X1)
    | ~ element(X2,the_carrier(X1))
    | ~ element(X3,the_carrier(X1)) ),
    inference(split_conjunct,[status(thm)],[c_0_43]) ).

cnf(c_0_52,plain,
    ( function(the_L_join(X1))
    | ~ join_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_32]) ).

cnf(c_0_53,plain,
    ( quasi_total(the_L_join(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ join_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_32]) ).

cnf(c_0_54,plain,
    ( relation_of2(the_L_join(X1),cartesian_product2(the_carrier(X1),the_carrier(X1)),the_carrier(X1))
    | ~ join_semilatt_str(X1) ),
    inference(spm,[status(thm)],[c_0_23,c_0_44]) ).

cnf(c_0_55,negated_conjecture,
    ( apply_binary(the_L_meet(boole_lattice(esk18_0)),esk19_0,esk20_0) != set_intersection2(esk19_0,esk20_0)
    | join(boole_lattice(esk18_0),esk19_0,esk20_0) != set_union2(esk19_0,esk20_0)
    | ~ meet_semilatt_str(boole_lattice(esk18_0)) ),
    inference(sr,[status(thm)],[inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_45,c_0_46]),c_0_39]),c_0_39]),c_0_47]),c_0_39]),c_0_48])]),c_0_49]),c_0_50]) ).

cnf(c_0_56,plain,
    ( join(X1,X2,X3) = apply_binary(the_L_join(X1),X2,X3)
    | empty(the_carrier(X1))
    | empty_carrier(X1)
    | ~ join_semilatt_str(X1)
    | ~ element(X3,the_carrier(X1))
    | ~ element(X2,the_carrier(X1)) ),
    inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_51,c_0_34]),c_0_52]),c_0_53]),c_0_54]) ).

cnf(c_0_57,plain,
    ( apply_binary(the_L_meet(X1),X2,X3) = subset_intersection2(X4,X2,X3)
    | ~ element(X3,powerset(X4))
    | ~ element(X2,powerset(X4))
    | X1 != boole_lattice(X4)
    | ~ strict_latt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_19]) ).

cnf(c_0_58,negated_conjecture,
    ( apply_binary(the_L_meet(boole_lattice(esk18_0)),esk19_0,esk20_0) != set_intersection2(esk19_0,esk20_0)
    | apply_binary(the_L_join(boole_lattice(esk18_0)),esk19_0,esk20_0) != set_union2(esk19_0,esk20_0)
    | ~ meet_semilatt_str(boole_lattice(esk18_0))
    | ~ join_semilatt_str(boole_lattice(esk18_0)) ),
    inference(sr,[status(thm)],[inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_55,c_0_56]),c_0_39]),c_0_39]),c_0_47]),c_0_39]),c_0_48])]),c_0_49]),c_0_50]) ).

cnf(c_0_59,plain,
    ( apply_binary(the_L_meet(boole_lattice(X1)),X2,X3) = subset_intersection2(X1,X2,X3)
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(er,[status(thm)],[c_0_57]),c_0_27]),c_0_28])]) ).

cnf(c_0_60,plain,
    ( apply_binary(the_L_join(X1),X2,X3) = subset_union2(X4,X2,X3)
    | ~ element(X3,powerset(X4))
    | ~ element(X2,powerset(X4))
    | X1 != boole_lattice(X4)
    | ~ strict_latt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_19]) ).

cnf(c_0_61,negated_conjecture,
    ( apply_binary(the_L_join(boole_lattice(esk18_0)),esk19_0,esk20_0) != set_union2(esk19_0,esk20_0)
    | subset_intersection2(esk18_0,esk19_0,esk20_0) != set_intersection2(esk19_0,esk20_0)
    | ~ meet_semilatt_str(boole_lattice(esk18_0))
    | ~ join_semilatt_str(boole_lattice(esk18_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_58,c_0_59]),c_0_47]),c_0_48])]) ).

cnf(c_0_62,plain,
    ( apply_binary(the_L_join(boole_lattice(X1)),X2,X3) = subset_union2(X1,X2,X3)
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(er,[status(thm)],[c_0_60]),c_0_27]),c_0_28])]) ).

fof(c_0_63,plain,
    ! [X133,X134,X135] :
      ( ~ element(X134,powerset(X133))
      | ~ element(X135,powerset(X133))
      | subset_intersection2(X133,X134,X135) = set_intersection2(X134,X135) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[redefinition_k5_subset_1])]) ).

cnf(c_0_64,negated_conjecture,
    ( subset_union2(esk18_0,esk19_0,esk20_0) != set_union2(esk19_0,esk20_0)
    | subset_intersection2(esk18_0,esk19_0,esk20_0) != set_intersection2(esk19_0,esk20_0)
    | ~ meet_semilatt_str(boole_lattice(esk18_0))
    | ~ join_semilatt_str(boole_lattice(esk18_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61,c_0_62]),c_0_47]),c_0_48])]) ).

cnf(c_0_65,plain,
    ( subset_intersection2(X2,X1,X3) = set_intersection2(X1,X3)
    | ~ element(X1,powerset(X2))
    | ~ element(X3,powerset(X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_63]) ).

fof(c_0_66,plain,
    ! [X130,X131,X132] :
      ( ~ element(X131,powerset(X130))
      | ~ element(X132,powerset(X130))
      | subset_union2(X130,X131,X132) = set_union2(X131,X132) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[redefinition_k4_subset_1])]) ).

cnf(c_0_67,negated_conjecture,
    ( subset_union2(esk18_0,esk19_0,esk20_0) != set_union2(esk19_0,esk20_0)
    | ~ meet_semilatt_str(boole_lattice(esk18_0))
    | ~ join_semilatt_str(boole_lattice(esk18_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64,c_0_65]),c_0_47]),c_0_48])]) ).

cnf(c_0_68,plain,
    ( subset_union2(X2,X1,X3) = set_union2(X1,X3)
    | ~ element(X1,powerset(X2))
    | ~ element(X3,powerset(X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_66]) ).

fof(c_0_69,plain,
    ! [X66] :
      ( ( meet_semilatt_str(X66)
        | ~ latt_str(X66) )
      & ( join_semilatt_str(X66)
        | ~ latt_str(X66) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[dt_l3_lattices])])]) ).

cnf(c_0_70,negated_conjecture,
    ( ~ meet_semilatt_str(boole_lattice(esk18_0))
    | ~ join_semilatt_str(boole_lattice(esk18_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67,c_0_68]),c_0_47]),c_0_48])]) ).

cnf(c_0_71,plain,
    ( meet_semilatt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_69]) ).

cnf(c_0_72,negated_conjecture,
    ~ join_semilatt_str(boole_lattice(esk18_0)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_70,c_0_71]),c_0_28])]) ).

cnf(c_0_73,plain,
    ( join_semilatt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_69]) ).

cnf(c_0_74,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_72,c_0_73]),c_0_28])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem    : SEU343+1 : TPTP v8.1.2. Released v3.3.0.
% 0.00/0.14  % Command    : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s
% 0.13/0.35  % Computer : n012.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit   : 300
% 0.13/0.35  % WCLimit    : 300
% 0.13/0.35  % DateTime   : Wed Aug 23 20:43:57 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.20/0.57  start to proof: theBenchmark
% 56.98/57.06  % Version  : CSE_E---1.5
% 56.98/57.06  % Problem  : theBenchmark.p
% 56.98/57.06  % Proof found
% 56.98/57.06  % SZS status Theorem for theBenchmark.p
% 56.98/57.06  % SZS output start Proof
% See solution above
% 56.98/57.07  % Total time : 56.462000 s
% 56.98/57.07  % SZS output end Proof
% 56.98/57.07  % Total time : 56.469000 s
%------------------------------------------------------------------------------