TSTP Solution File: SEU298+1 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : SEU298+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 16:30:43 EDT 2023

% Result   : Theorem 0.21s 0.55s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.13  % Problem    : SEU298+1 : TPTP v8.1.2. Released v3.3.0.
% 0.12/0.14  % Command    : do_cvc5 %s %d
% 0.14/0.36  % Computer : n023.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit   : 300
% 0.14/0.36  % WCLimit    : 300
% 0.14/0.36  % DateTime   : Wed Aug 23 19:59:12 EDT 2023
% 0.14/0.36  % CPUTime    : 
% 0.21/0.50  %----Proving TF0_NAR, FOF, or CNF
% 0.21/0.55  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.qHauOHirtM/cvc5---1.0.5_26738.p...
% 0.21/0.55  ------- get file name : TPTP file name is SEU298+1
% 0.21/0.55  ------- cvc5-fof : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_26738.smt2...
% 0.21/0.55  --- Run --decision=internal --simplification=none --no-inst-no-entail --no-cbqi --full-saturate-quant at 10...
% 0.21/0.55  % SZS status Theorem for SEU298+1
% 0.21/0.55  % SZS output start Proof for SEU298+1
% 0.21/0.55  (
% 0.21/0.55  (let ((_let_1 (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.ordinal A) (tptp.element B (tptp.powerset (tptp.powerset (tptp.succ A))))) (=> (forall ((C $$unsorted) (D $$unsorted) (E $$unsorted)) (=> (and (= C D) (exists ((F $$unsorted)) (and (tptp.in F B) (= D (tptp.set_difference F (tptp.singleton A))))) (= C E) (exists ((G $$unsorted)) (and (tptp.in G B) (= E (tptp.set_difference G (tptp.singleton A)))))) (= D E))) (exists ((C $$unsorted)) (forall ((D $$unsorted)) (= (tptp.in D C) (exists ((E $$unsorted)) (and (tptp.in E (tptp.powerset A)) (= E D) (exists ((H $$unsorted)) (and (tptp.in H B) (= D (tptp.set_difference H (tptp.singleton A))))))))))))))) (let ((_let_2 (not (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.ordinal A) (tptp.element B (tptp.powerset (tptp.powerset (tptp.succ A))))) (exists ((C $$unsorted)) (forall ((D $$unsorted)) (= (tptp.in D C) (and (tptp.in D (tptp.powerset A)) (exists ((E $$unsorted)) (and (tptp.in E B) (= D (tptp.set_difference E (tptp.singleton A)))))))))))))) (let ((_let_3 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.ordinal A)) (not (tptp.element B (tptp.powerset (tptp.powerset (tptp.succ A))))) (not (forall ((C $$unsorted)) (not (forall ((D $$unsorted)) (= (tptp.in D C) (and (not (forall ((H $$unsorted)) (or (not (tptp.in H B)) (not (= D (tptp.set_difference H (tptp.singleton A))))))) (tptp.in D (tptp.powerset A)))))))))))) (let ((_let_4 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.ordinal A)) (not (tptp.element B (tptp.powerset (tptp.powerset (tptp.succ A))))) (not (forall ((C $$unsorted)) (not (forall ((D $$unsorted)) (= (tptp.in D C) (and (tptp.in D (tptp.powerset A)) (not (forall ((E $$unsorted)) (or (not (tptp.in E B)) (not (= D (tptp.set_difference E (tptp.singleton A))))))))))))))))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (ASSUME :args (_let_1)) (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT SBA_FIXPOINT))) (MACRO_RESOLUTION_TRUST (EQUIV_ELIM2 (TRANS (ALPHA_EQUIV :args (_let_4 (= B B) (= A A) (= C C) (= D D) (= E H))) (MACRO_SR_PRED_INTRO :args ((= (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.ordinal A)) (not (tptp.element B (tptp.powerset (tptp.powerset (tptp.succ A))))) (not (forall ((C $$unsorted)) (not (forall ((D $$unsorted)) (= (tptp.in D C) (and (tptp.in D (tptp.powerset A)) (not (forall ((H $$unsorted)) (or (not (tptp.in H B)) (not (= D (tptp.set_difference H (tptp.singleton A))))))))))))))) _let_3) SB_DEFAULT SBA_SEQUENTIAL RW_EXT_REWRITE)))) (EQ_RESOLVE (ASSUME :args (_let_2)) (MACRO_SR_EQ_INTRO :args (_let_2 SB_DEFAULT SBA_FIXPOINT))) :args ((not _let_3) true _let_4)) :args (false true _let_3)) :args (_let_2 (forall ((A $$unsorted)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (tptp.empty B) (tptp.relation B) (tptp.function B) (tptp.one_to_one B) (tptp.epsilon_transitive B) (tptp.epsilon_connected B) (tptp.ordinal B) (tptp.natural B) (tptp.finite B)))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A) (tptp.one_to_one A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A) (tptp.one_to_one A) (tptp.empty A) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.empty A) (tptp.function A))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.function A))) (let ((_let_2 (tptp.relation A))) (=> (and _let_2 (tptp.empty A) _let_1) (and _let_2 _let_1 (tptp.one_to_one A)))))) (exists ((A $$unsorted)) (and (tptp.empty A) (tptp.relation A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation A) (tptp.relation B)) (tptp.relation (tptp.set_difference A B)))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.relation A))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A) (tptp.natural A))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.succ A))) (=> (and (tptp.ordinal A) (tptp.natural A)) (and (not (tptp.empty _let_1)) (tptp.epsilon_transitive _let_1) (tptp.epsilon_connected _let_1) (tptp.ordinal _let_1) (tptp.natural _let_1))))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.finite A))) (forall ((A $$unsorted)) (=> (tptp.empty A) (tptp.finite A))) (forall ((A $$unsorted)) (=> (not (tptp.empty A)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (not (tptp.empty B)) (tptp.finite B))))) (forall ((A $$unsorted)) (=> (tptp.finite A) (forall ((B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (tptp.finite B))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.finite A) (tptp.finite (tptp.set_difference A B)))) (forall ((A $$unsorted)) (=> (tptp.empty A) (tptp.function A))) (forall ((A $$unsorted)) (=> (tptp.empty A) (tptp.relation A))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.ordinal A))) (=> (and (tptp.empty A) _let_1) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) _let_1 (tptp.natural A))))) (forall ((A $$unsorted)) (=> (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A)) (tptp.ordinal A))) (exists ((A $$unsorted)) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (forall ((A $$unsorted)) (=> (tptp.empty A) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A)))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (forall ((A $$unsorted)) (=> (not (tptp.empty A)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (not (tptp.empty B)))))) (forall ((A $$unsorted)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (tptp.empty B)))) (exists ((A $$unsorted)) (tptp.empty A)) (exists ((A $$unsorted)) (not (tptp.empty A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (not (tptp.in B A)))) true true true true true (forall ((A $$unsorted)) (let ((_let_1 (tptp.singleton A))) (and (not (tptp.empty _let_1)) (tptp.finite _let_1)))) (forall ((A $$unsorted)) (=> (tptp.ordinal A) (forall ((B $$unsorted)) (=> (tptp.element B A) (and (tptp.epsilon_transitive B) (tptp.epsilon_connected B) (tptp.ordinal B)))))) (forall ((A $$unsorted)) (not (tptp.empty (tptp.succ A)))) (forall ((A $$unsorted)) (=> (tptp.ordinal A) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A)))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.succ A))) (=> (tptp.ordinal A) (and (not (tptp.empty _let_1)) (tptp.epsilon_transitive _let_1) (tptp.epsilon_connected _let_1) (tptp.ordinal _let_1))))) (forall ((A $$unsorted)) (not (tptp.empty (tptp.powerset A)))) (forall ((A $$unsorted)) (not (tptp.empty (tptp.singleton A)))) _let_1 true)))))))
% 0.21/0.55  )
% 0.21/0.55  % SZS output end Proof for SEU298+1
% 0.21/0.55  % cvc5---1.0.5 exiting
% 0.21/0.56  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------