TSTP Solution File: SEU294+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : SEU294+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:15:30 EDT 2022

% Result   : Theorem 2.12s 2.33s
% Output   : Refutation 2.12s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    3
%            Number of leaves      :    5
% Syntax   : Number of clauses     :    8 (   6 unt;   0 nHn;   8 RR)
%            Number of literals    :   11 (   0 equ;   4 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    4 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    3 (   3 usr;   2 con; 0-1 aty)
%            Number of variables   :    4 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(11,axiom,
    ( ~ finite(A)
    | ~ element(B,powerset(A))
    | finite(B) ),
    file('SEU294+1.p',unknown),
    [] ).

cnf(25,axiom,
    ~ finite(dollar_c16),
    file('SEU294+1.p',unknown),
    [] ).

cnf(29,axiom,
    ( element(A,powerset(B))
    | ~ subset(A,B) ),
    file('SEU294+1.p',unknown),
    [] ).

cnf(98,axiom,
    subset(dollar_c16,dollar_c15),
    file('SEU294+1.p',unknown),
    [] ).

cnf(99,axiom,
    finite(dollar_c15),
    file('SEU294+1.p',unknown),
    [] ).

cnf(203,plain,
    element(dollar_c16,powerset(dollar_c15)),
    inference(hyper,[status(thm)],[98,29]),
    [iquote('hyper,98,29')] ).

cnf(283,plain,
    finite(dollar_c16),
    inference(hyper,[status(thm)],[203,11,99]),
    [iquote('hyper,203,11,99')] ).

cnf(284,plain,
    $false,
    inference(binary,[status(thm)],[283,25]),
    [iquote('binary,283.1,25.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SEU294+1 : TPTP v8.1.0. Released v3.3.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n020.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 07:59:23 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 2.12/2.32  ----- Otter 3.3f, August 2004 -----
% 2.12/2.32  The process was started by sandbox on n020.cluster.edu,
% 2.12/2.32  Wed Jul 27 07:59:23 2022
% 2.12/2.32  The command was "./otter".  The process ID is 32110.
% 2.12/2.32  
% 2.12/2.32  set(prolog_style_variables).
% 2.12/2.32  set(auto).
% 2.12/2.32     dependent: set(auto1).
% 2.12/2.32     dependent: set(process_input).
% 2.12/2.32     dependent: clear(print_kept).
% 2.12/2.32     dependent: clear(print_new_demod).
% 2.12/2.32     dependent: clear(print_back_demod).
% 2.12/2.32     dependent: clear(print_back_sub).
% 2.12/2.32     dependent: set(control_memory).
% 2.12/2.32     dependent: assign(max_mem, 12000).
% 2.12/2.32     dependent: assign(pick_given_ratio, 4).
% 2.12/2.32     dependent: assign(stats_level, 1).
% 2.12/2.32     dependent: assign(max_seconds, 10800).
% 2.12/2.32  clear(print_given).
% 2.12/2.32  
% 2.12/2.32  formula_list(usable).
% 2.12/2.32  all A (A=A).
% 2.12/2.32  all A B (in(A,B)-> -in(B,A)).
% 2.12/2.32  all A (ordinal(A)-> (all B (element(B,A)->epsilon_transitive(B)&epsilon_connected(B)&ordinal(B)))).
% 2.12/2.32  all A (empty(A)->finite(A)).
% 2.12/2.32  all A (empty(A)->function(A)).
% 2.12/2.32  all A (ordinal(A)->epsilon_transitive(A)&epsilon_connected(A)).
% 2.12/2.32  all A (empty(A)->relation(A)).
% 2.12/2.32  all A (empty(A)&ordinal(A)->epsilon_transitive(A)&epsilon_connected(A)&ordinal(A)&natural(A)).
% 2.12/2.32  all A (finite(A)-> (all B (element(B,powerset(A))->finite(B)))).
% 2.12/2.32  all A (relation(A)&empty(A)&function(A)->relation(A)&function(A)&one_to_one(A)).
% 2.12/2.32  all A (epsilon_transitive(A)&epsilon_connected(A)->ordinal(A)).
% 2.12/2.32  all A (empty(A)->epsilon_transitive(A)&epsilon_connected(A)&ordinal(A)).
% 2.12/2.32  $T.
% 2.12/2.32  $T.
% 2.12/2.32  $T.
% 2.12/2.32  all A exists B element(B,A).
% 2.12/2.32  empty(empty_set).
% 2.12/2.32  relation(empty_set).
% 2.12/2.32  relation_empty_yielding(empty_set).
% 2.12/2.32  all A (-empty(powerset(A))).
% 2.12/2.32  empty(empty_set).
% 2.12/2.32  relation(empty_set).
% 2.12/2.32  relation_empty_yielding(empty_set).
% 2.12/2.32  function(empty_set).
% 2.12/2.32  one_to_one(empty_set).
% 2.12/2.32  empty(empty_set).
% 2.12/2.32  epsilon_transitive(empty_set).
% 2.12/2.32  epsilon_connected(empty_set).
% 2.12/2.32  ordinal(empty_set).
% 2.12/2.32  empty(empty_set).
% 2.12/2.32  relation(empty_set).
% 2.12/2.32  exists A (-empty(A)&epsilon_transitive(A)&epsilon_connected(A)&ordinal(A)&natural(A)).
% 2.12/2.32  exists A (-empty(A)&finite(A)).
% 2.12/2.32  exists A (relation(A)&function(A)).
% 2.12/2.32  exists A (epsilon_transitive(A)&epsilon_connected(A)&ordinal(A)).
% 2.12/2.32  exists A (empty(A)&relation(A)).
% 2.12/2.32  all A (-empty(A)-> (exists B (element(B,powerset(A))& -empty(B)))).
% 2.12/2.32  exists A empty(A).
% 2.12/2.32  all A exists B (element(B,powerset(A))&empty(B)&relation(B)&function(B)&one_to_one(B)&epsilon_transitive(B)&epsilon_connected(B)&ordinal(B)&natural(B)&finite(B)).
% 2.12/2.32  exists A (relation(A)&empty(A)&function(A)).
% 2.12/2.32  exists A (relation(A)&function(A)&one_to_one(A)&empty(A)&epsilon_transitive(A)&epsilon_connected(A)&ordinal(A)).
% 2.12/2.32  exists A (-empty(A)&relation(A)).
% 2.12/2.32  all A exists B (element(B,powerset(A))&empty(B)).
% 2.12/2.32  exists A (-empty(A)).
% 2.12/2.32  all A (-empty(A)-> (exists B (element(B,powerset(A))& -empty(B)&finite(B)))).
% 2.12/2.32  exists A (relation(A)&function(A)&one_to_one(A)).
% 2.12/2.32  exists A (-empty(A)&epsilon_transitive(A)&epsilon_connected(A)&ordinal(A)).
% 2.12/2.32  exists A (relation(A)&relation_empty_yielding(A)).
% 2.12/2.32  exists A (relation(A)&relation_empty_yielding(A)&function(A)).
% 2.12/2.32  all A B subset(A,A).
% 2.12/2.32  -(all A B (subset(A,B)&finite(B)->finite(A))).
% 2.12/2.32  all A B (in(A,B)->element(A,B)).
% 2.12/2.32  all A B (element(A,B)->empty(B)|in(A,B)).
% 2.12/2.32  all A B (element(A,powerset(B))<->subset(A,B)).
% 2.12/2.32  all A B C (in(A,B)&element(B,powerset(C))->element(A,C)).
% 2.12/2.32  all A B C (-(in(A,B)&element(B,powerset(C))&empty(C))).
% 2.12/2.32  all A (empty(A)->A=empty_set).
% 2.12/2.32  all A B (-(in(A,B)&empty(B))).
% 2.12/2.32  all A B (-(empty(A)&A!=B&empty(B))).
% 2.12/2.32  end_of_list.
% 2.12/2.32  
% 2.12/2.32  -------> usable clausifies to:
% 2.12/2.32  
% 2.12/2.32  list(usable).
% 2.12/2.32  0 [] A=A.
% 2.12/2.32  0 [] -in(A,B)| -in(B,A).
% 2.12/2.32  0 [] -ordinal(A)| -element(B,A)|epsilon_transitive(B).
% 2.12/2.32  0 [] -ordinal(A)| -element(B,A)|epsilon_connected(B).
% 2.12/2.32  0 [] -ordinal(A)| -element(B,A)|ordinal(B).
% 2.12/2.32  0 [] -empty(A)|finite(A).
% 2.12/2.32  0 [] -empty(A)|function(A).
% 2.12/2.32  0 [] -ordinal(A)|epsilon_transitive(A).
% 2.12/2.32  0 [] -ordinal(A)|epsilon_connected(A).
% 2.12/2.32  0 [] -empty(A)|relation(A).
% 2.12/2.32  0 [] -empty(A)| -ordinal(A)|epsilon_transitive(A).
% 2.12/2.32  0 [] -empty(A)| -ordinal(A)|epsilon_connected(A).
% 2.12/2.32  0 [] -empty(A)| -ordinal(A)|natural(A).
% 2.12/2.32  0 [] -finite(A)| -element(B,powerset(A))|finite(B).
% 2.12/2.32  0 [] -relation(A)| -empty(A)| -function(A)|one_to_one(A).
% 2.12/2.32  0 [] -epsilon_transitive(A)| -epsilon_connected(A)|ordinal(A).
% 2.12/2.32  0 [] -empty(A)|epsilon_transitive(A).
% 2.12/2.32  0 [] -empty(A)|epsilon_connected(A).
% 2.12/2.32  0 [] -empty(A)|ordinal(A).
% 2.12/2.32  0 [] $T.
% 2.12/2.32  0 [] $T.
% 2.12/2.32  0 [] $T.
% 2.12/2.32  0 [] element($f1(A),A).
% 2.12/2.32  0 [] empty(empty_set).
% 2.12/2.32  0 [] relation(empty_set).
% 2.12/2.32  0 [] relation_empty_yielding(empty_set).
% 2.12/2.32  0 [] -empty(powerset(A)).
% 2.12/2.32  0 [] empty(empty_set).
% 2.12/2.32  0 [] relation(empty_set).
% 2.12/2.32  0 [] relation_empty_yielding(empty_set).
% 2.12/2.32  0 [] function(empty_set).
% 2.12/2.32  0 [] one_to_one(empty_set).
% 2.12/2.32  0 [] empty(empty_set).
% 2.12/2.32  0 [] epsilon_transitive(empty_set).
% 2.12/2.32  0 [] epsilon_connected(empty_set).
% 2.12/2.32  0 [] ordinal(empty_set).
% 2.12/2.32  0 [] empty(empty_set).
% 2.12/2.32  0 [] relation(empty_set).
% 2.12/2.32  0 [] -empty($c1).
% 2.12/2.32  0 [] epsilon_transitive($c1).
% 2.12/2.32  0 [] epsilon_connected($c1).
% 2.12/2.32  0 [] ordinal($c1).
% 2.12/2.32  0 [] natural($c1).
% 2.12/2.32  0 [] -empty($c2).
% 2.12/2.32  0 [] finite($c2).
% 2.12/2.32  0 [] relation($c3).
% 2.12/2.32  0 [] function($c3).
% 2.12/2.32  0 [] epsilon_transitive($c4).
% 2.12/2.32  0 [] epsilon_connected($c4).
% 2.12/2.32  0 [] ordinal($c4).
% 2.12/2.32  0 [] empty($c5).
% 2.12/2.32  0 [] relation($c5).
% 2.12/2.32  0 [] empty(A)|element($f2(A),powerset(A)).
% 2.12/2.32  0 [] empty(A)| -empty($f2(A)).
% 2.12/2.32  0 [] empty($c6).
% 2.12/2.32  0 [] element($f3(A),powerset(A)).
% 2.12/2.32  0 [] empty($f3(A)).
% 2.12/2.32  0 [] relation($f3(A)).
% 2.12/2.32  0 [] function($f3(A)).
% 2.12/2.32  0 [] one_to_one($f3(A)).
% 2.12/2.32  0 [] epsilon_transitive($f3(A)).
% 2.12/2.32  0 [] epsilon_connected($f3(A)).
% 2.12/2.32  0 [] ordinal($f3(A)).
% 2.12/2.32  0 [] natural($f3(A)).
% 2.12/2.32  0 [] finite($f3(A)).
% 2.12/2.32  0 [] relation($c7).
% 2.12/2.32  0 [] empty($c7).
% 2.12/2.32  0 [] function($c7).
% 2.12/2.32  0 [] relation($c8).
% 2.12/2.32  0 [] function($c8).
% 2.12/2.32  0 [] one_to_one($c8).
% 2.12/2.32  0 [] empty($c8).
% 2.12/2.32  0 [] epsilon_transitive($c8).
% 2.12/2.32  0 [] epsilon_connected($c8).
% 2.12/2.32  0 [] ordinal($c8).
% 2.12/2.32  0 [] -empty($c9).
% 2.12/2.32  0 [] relation($c9).
% 2.12/2.32  0 [] element($f4(A),powerset(A)).
% 2.12/2.32  0 [] empty($f4(A)).
% 2.12/2.32  0 [] -empty($c10).
% 2.12/2.32  0 [] empty(A)|element($f5(A),powerset(A)).
% 2.12/2.32  0 [] empty(A)| -empty($f5(A)).
% 2.12/2.32  0 [] empty(A)|finite($f5(A)).
% 2.12/2.32  0 [] relation($c11).
% 2.12/2.32  0 [] function($c11).
% 2.12/2.32  0 [] one_to_one($c11).
% 2.12/2.32  0 [] -empty($c12).
% 2.12/2.32  0 [] epsilon_transitive($c12).
% 2.12/2.32  0 [] epsilon_connected($c12).
% 2.12/2.32  0 [] ordinal($c12).
% 2.12/2.32  0 [] relation($c13).
% 2.12/2.32  0 [] relation_empty_yielding($c13).
% 2.12/2.32  0 [] relation($c14).
% 2.12/2.32  0 [] relation_empty_yielding($c14).
% 2.12/2.32  0 [] function($c14).
% 2.12/2.32  0 [] subset(A,A).
% 2.12/2.32  0 [] subset($c16,$c15).
% 2.12/2.32  0 [] finite($c15).
% 2.12/2.32  0 [] -finite($c16).
% 2.12/2.32  0 [] -in(A,B)|element(A,B).
% 2.12/2.32  0 [] -element(A,B)|empty(B)|in(A,B).
% 2.12/2.32  0 [] -element(A,powerset(B))|subset(A,B).
% 2.12/2.32  0 [] element(A,powerset(B))| -subset(A,B).
% 2.12/2.32  0 [] -in(A,B)| -element(B,powerset(C))|element(A,C).
% 2.12/2.32  0 [] -in(A,B)| -element(B,powerset(C))| -empty(C).
% 2.12/2.32  0 [] -empty(A)|A=empty_set.
% 2.12/2.32  0 [] -in(A,B)| -empty(B).
% 2.12/2.32  0 [] -empty(A)|A=B| -empty(B).
% 2.12/2.32  end_of_list.
% 2.12/2.32  
% 2.12/2.32  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=4.
% 2.12/2.32  
% 2.12/2.32  This ia a non-Horn set with equality.  The strategy will be
% 2.12/2.32  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 2.12/2.32  deletion, with positive clauses in sos and nonpositive
% 2.12/2.32  clauses in usable.
% 2.12/2.32  
% 2.12/2.32     dependent: set(knuth_bendix).
% 2.12/2.32     dependent: set(anl_eq).
% 2.12/2.32     dependent: set(para_from).
% 2.12/2.32     dependent: set(para_into).
% 2.12/2.32     dependent: clear(para_from_right).
% 2.12/2.32     dependent: clear(para_into_right).
% 2.12/2.32     dependent: set(para_from_vars).
% 2.12/2.32     dependent: set(eq_units_both_ways).
% 2.12/2.32     dependent: set(dynamic_demod_all).
% 2.12/2.32     dependent: set(dynamic_demod).
% 2.12/2.32     dependent: set(order_eq).
% 2.12/2.32     dependent: set(back_demod).
% 2.12/2.32     dependent: set(lrpo).
% 2.12/2.32     dependent: set(hyper_res).
% 2.12/2.32     dependent: set(unit_deletion).
% 2.12/2.32     dependent: set(factor).
% 2.12/2.32  
% 2.12/2.32  ------------> process usable:
% 2.12/2.32  ** KEPT (pick-wt=6): 1 [] -in(A,B)| -in(B,A).
% 2.12/2.32  ** KEPT (pick-wt=7): 2 [] -ordinal(A)| -element(B,A)|epsilon_transitive(B).
% 2.12/2.32  ** KEPT (pick-wt=7): 3 [] -ordinal(A)| -element(B,A)|epsilon_connected(B).
% 2.12/2.32  ** KEPT (pick-wt=7): 4 [] -ordinal(A)| -element(B,A)|ordinal(B).
% 2.12/2.32  ** KEPT (pick-wt=4): 5 [] -empty(A)|finite(A).
% 2.12/2.32  ** KEPT (pick-wt=4): 6 [] -empty(A)|function(A).
% 2.12/2.32  ** KEPT (pick-wt=4): 7 [] -ordinal(A)|epsilon_transitive(A).
% 2.12/2.32  ** KEPT (pick-wt=4): 8 [] -ordinal(A)|epsilon_connected(A).
% 2.12/2.32  ** KEPT (pick-wt=4): 9 [] -empty(A)|relation(A).
% 2.12/2.32    Following clause subsumed by 7 during input processing: 0 [] -empty(A)| -ordinal(A)|epsilon_transitive(A).
% 2.12/2.32    Following clause subsumed by 8 during input processing: 0 [] -empty(A)| -ordinal(A)|epsilon_connected(A).
% 2.12/2.32  ** KEPT (pick-wt=6): 10 [] -empty(A)| -ordinal(A)|natural(A).
% 2.12/2.32  ** KEPT (pick-wt=8): 11 [] -finite(A)| -element(B,powerset(A))|finite(B).
% 2.12/2.32  ** KEPT (pick-wt=8): 12 [] -relation(A)| -empty(A)| -function(A)|one_to_one(A).
% 2.12/2.32  ** KEPT (pick-wt=6): 13 [] -epsilon_transitive(A)| -epsilon_connected(A)|ordinal(A).
% 2.12/2.32  ** KEPT (pick-wt=4): 14 [] -empty(A)|epsilon_transitive(A).
% 2.12/2.32  ** KEPT (pick-wt=4): 15 [] -empty(A)|epsilon_connected(A).
% 2.12/2.32  ** KEPT (pick-wt=4): 16 [] -empty(A)|ordinal(A).
% 2.12/2.32  ** KEPT (pick-wt=3): 17 [] -empty(powerset(A)).
% 2.12/2.32  ** KEPT (pick-wt=2): 18 [] -empty($c1).
% 2.12/2.32  ** KEPT (pick-wt=2): 19 [] -empty($c2).
% 2.12/2.32  ** KEPT (pick-wt=5): 20 [] empty(A)| -empty($f2(A)).
% 2.12/2.32  ** KEPT (pick-wt=2): 21 [] -empty($c9).
% 2.12/2.32  ** KEPT (pick-wt=2): 22 [] -empty($c10).
% 2.12/2.32  ** KEPT (pick-wt=5): 23 [] empty(A)| -empty($f5(A)).
% 2.12/2.32  ** KEPT (pick-wt=2): 24 [] -empty($c12).
% 2.12/2.32  ** KEPT (pick-wt=2): 25 [] -finite($c16).
% 2.12/2.32  ** KEPT (pick-wt=6): 26 [] -in(A,B)|element(A,B).
% 2.12/2.32  ** KEPT (pick-wt=8): 27 [] -element(A,B)|empty(B)|in(A,B).
% 2.12/2.32  ** KEPT (pick-wt=7): 28 [] -element(A,powerset(B))|subset(A,B).
% 2.12/2.32  ** KEPT (pick-wt=7): 29 [] element(A,powerset(B))| -subset(A,B).
% 2.12/2.32  ** KEPT (pick-wt=10): 30 [] -in(A,B)| -element(B,powerset(C))|element(A,C).
% 2.12/2.32  ** KEPT (pick-wt=9): 31 [] -in(A,B)| -element(B,powerset(C))| -empty(C).
% 2.12/2.32  ** KEPT (pick-wt=5): 32 [] -empty(A)|A=empty_set.
% 2.12/2.32  ** KEPT (pick-wt=5): 33 [] -in(A,B)| -empty(B).
% 2.12/2.32  ** KEPT (pick-wt=7): 34 [] -empty(A)|A=B| -empty(B).
% 2.12/2.32  
% 2.12/2.32  ------------> process sos:
% 2.12/2.32  ** KEPT (pick-wt=3): 37 [] A=A.
% 2.12/2.32  ** KEPT (pick-wt=4): 38 [] element($f1(A),A).
% 2.12/2.32  ** KEPT (pick-wt=2): 39 [] empty(empty_set).
% 2.12/2.32  ** KEPT (pick-wt=2): 40 [] relation(empty_set).
% 2.12/2.32  ** KEPT (pick-wt=2): 41 [] relation_empty_yielding(empty_set).
% 2.12/2.32    Following clause subsumed by 39 during input processing: 0 [] empty(empty_set).
% 2.12/2.32    Following clause subsumed by 40 during input processing: 0 [] relation(empty_set).
% 2.12/2.32    Following clause subsumed by 41 during input processing: 0 [] relation_empty_yielding(empty_set).
% 2.12/2.32  ** KEPT (pick-wt=2): 42 [] function(empty_set).
% 2.12/2.32  ** KEPT (pick-wt=2): 43 [] one_to_one(empty_set).
% 2.12/2.32    Following clause subsumed by 39 during input processing: 0 [] empty(empty_set).
% 2.12/2.32  ** KEPT (pick-wt=2): 44 [] epsilon_transitive(empty_set).
% 2.12/2.32  ** KEPT (pick-wt=2): 45 [] epsilon_connected(empty_set).
% 2.12/2.32  ** KEPT (pick-wt=2): 46 [] ordinal(empty_set).
% 2.12/2.32    Following clause subsumed by 39 during input processing: 0 [] empty(empty_set).
% 2.12/2.32    Following clause subsumed by 40 during input processing: 0 [] relation(empty_set).
% 2.12/2.32  ** KEPT (pick-wt=2): 47 [] epsilon_transitive($c1).
% 2.12/2.32  ** KEPT (pick-wt=2): 48 [] epsilon_connected($c1).
% 2.12/2.32  ** KEPT (pick-wt=2): 49 [] ordinal($c1).
% 2.12/2.32  ** KEPT (pick-wt=2): 50 [] natural($c1).
% 2.12/2.32  ** KEPT (pick-wt=2): 51 [] finite($c2).
% 2.12/2.32  ** KEPT (pick-wt=2): 52 [] relation($c3).
% 2.12/2.32  ** KEPT (pick-wt=2): 53 [] function($c3).
% 2.12/2.32  ** KEPT (pick-wt=2): 54 [] epsilon_transitive($c4).
% 2.12/2.32  ** KEPT (pick-wt=2): 55 [] epsilon_connected($c4).
% 2.12/2.32  ** KEPT (pick-wt=2): 56 [] ordinal($c4).
% 2.12/2.32  ** KEPT (pick-wt=2): 57 [] empty($c5).
% 2.12/2.32  ** KEPT (pick-wt=2): 58 [] relation($c5).
% 2.12/2.32  ** KEPT (pick-wt=7): 59 [] empty(A)|element($f2(A),powerset(A)).
% 2.12/2.32  ** KEPT (pick-wt=2): 60 [] empty($c6).
% 2.12/2.32  ** KEPT (pick-wt=5): 61 [] element($f3(A),powerset(A)).
% 2.12/2.32  ** KEPT (pick-wt=3): 62 [] empty($f3(A)).
% 2.12/2.32  ** KEPT (pick-wt=3): 63 [] relation($f3(A)).
% 2.12/2.32  ** KEPT (pick-wt=3): 64 [] function($f3(A)).
% 2.12/2.32  ** KEPT (pick-wt=3): 65 [] one_to_one($f3(A)).
% 2.12/2.32  ** KEPT (pick-wt=3): 66 [] epsilon_transitive($f3(A)).
% 2.12/2.32  ** KEPT (pick-wt=3): 67 [] epsilon_connected($f3(A)).
% 2.12/2.32  ** KEPT (pick-wt=3): 68 [] ordinal($f3(A)).
% 2.12/2.32  ** KEPT (pick-wt=3): 69 [] natural($f3(A)).
% 2.12/2.32  ** KEPT (pick-wt=3): 70 [] finite($f3(A)).
% 2.12/2.32  ** KEPT (pick-wt=2): 71 [] relation($c7).
% 2.12/2.32  ** KEPT (pick-wt=2): 72 [] empty($c7).
% 2.12/2.32  ** KEPT (pick-wt=2): 73 [] function($c7).
% 2.12/2.32  ** KEPT (pick-wt=2): 74 [] relation($c8).
% 2.12/2.32  ** KEPT (pick-wt=2): 75 [] function($c8).
% 2.12/2.32  ** KEPT (pick-wt=2): 76 [] one_to_one($c8).
% 2.12/2.32  ** KEPT (pick-wt=2): 77 [] empty($c8).
% 2.12/2.32  ** KEPT (pick-wt=2): 78 [] epsilon_transitive($c8).
% 2.12/2.32  ** KEPT (pick-wt=2): 79 [] epsilon_connected($c8).
% 2.12/2.32  ** KEPT (pick-wt=2): 80 [] ordinal($c8).
% 2.12/2.32  ** KEPT (pick-wt=2): 81 [] relation($c9).
% 2.12/2.32  ** KEPT (pick-wt=5): 82 [] element($f4(A),powerset(A)).
% 2.12/2.32  ** KEPT (pick-wt=3): 83 [] empty($f4(A)).
% 2.12/2.32  ** KEPT (pick-wt=7): 84 [] empty(A)|element($f5(A),powerset(A)).
% 2.12/2.32  ** KEPT (pick-wt=5): 85 [] empty(A)|finite($f5(A)).
% 2.12/2.32  ** KEPT (pick-wt=2): 86 [] relation($c11).
% 2.12/2.32  ** KEPT (pick-wt=2): 87 [] function($c11).
% 2.12/2.32  ** KEPT (pick-wt=2): 88 [] one_to_one($c11).
% 2.12/2.32  ** KEPT (pick-wt=2): 89 [] epsilon_transitive($c12).
% 2.12/2.33  ** KEPT (pick-wt=2): 90 [] epsilon_connected($c12).
% 2.12/2.33  ** KEPT (pick-wt=2): 91 [] ordinal($c12).
% 2.12/2.33  ** KEPT (pick-wt=2): 92 [] relation($c13).
% 2.12/2.33  ** KEPT (pick-wt=2): 93 [] relation_empty_yielding($c13).
% 2.12/2.33  ** KEPT (pick-wt=2): 94 [] relation($c14).
% 2.12/2.33  ** KEPT (pick-wt=2): 95 [] relation_empty_yielding($c14).
% 2.12/2.33  ** KEPT (pick-wt=2): 96 [] function($c14).
% 2.12/2.33  ** KEPT (pick-wt=3): 97 [] subset(A,A).
% 2.12/2.33  ** KEPT (pick-wt=3): 98 [] subset($c16,$c15).
% 2.12/2.33  ** KEPT (pick-wt=2): 99 [] finite($c15).
% 2.12/2.33    Following clause subsumed by 37 during input processing: 0 [copy,37,flip.1] A=A.
% 2.12/2.33  37 back subsumes 36.
% 2.12/2.33  
% 2.12/2.33  ======= end of input processing =======
% 2.12/2.33  
% 2.12/2.33  =========== start of search ===========
% 2.12/2.33  
% 2.12/2.33  -------- PROOF -------- 
% 2.12/2.33  
% 2.12/2.33  ----> UNIT CONFLICT at   0.01 sec ----> 284 [binary,283.1,25.1] $F.
% 2.12/2.33  
% 2.12/2.33  Length of proof is 2.  Level of proof is 2.
% 2.12/2.33  
% 2.12/2.33  ---------------- PROOF ----------------
% 2.12/2.33  % SZS status Theorem
% 2.12/2.33  % SZS output start Refutation
% See solution above
% 2.12/2.33  ------------ end of proof -------------
% 2.12/2.33  
% 2.12/2.33  
% 2.12/2.33  Search stopped by max_proofs option.
% 2.12/2.33  
% 2.12/2.33  
% 2.12/2.33  Search stopped by max_proofs option.
% 2.12/2.33  
% 2.12/2.33  ============ end of search ============
% 2.12/2.33  
% 2.12/2.33  -------------- statistics -------------
% 2.12/2.33  clauses given                 94
% 2.12/2.33  clauses generated            547
% 2.12/2.33  clauses kept                 277
% 2.12/2.33  clauses forward subsumed     424
% 2.12/2.33  clauses back subsumed         11
% 2.12/2.33  Kbytes malloced             1953
% 2.12/2.33  
% 2.12/2.33  ----------- times (seconds) -----------
% 2.12/2.33  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 2.12/2.33  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.12/2.33  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.12/2.33  
% 2.12/2.33  That finishes the proof of the theorem.
% 2.12/2.33  
% 2.12/2.33  Process 32110 finished Wed Jul 27 07:59:25 2022
% 2.12/2.33  Otter interrupted
% 2.12/2.33  PROOF FOUND
%------------------------------------------------------------------------------