TSTP Solution File: SEU292+1 by SInE---0.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : SEU292+1 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : art02.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sun Dec 26 06:53:29 EST 2010

% Result   : Theorem 0.38s
% Output   : CNFRefutation 0.38s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :    7
% Syntax   : Number of formulae    :   59 (  14 unt;   0 def)
%            Number of atoms       :  234 (  72 equ)
%            Maximal formula atoms :   26 (   3 avg)
%            Number of connectives :  278 ( 103   ~; 111   |;  45   &)
%                                         (   3 <=>;  16  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   14 (   5 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    9 (   7 usr;   1 prp; 0-3 aty)
%            Number of functors    :   12 (  12 usr;   6 con; 0-3 aty)
%            Number of variables   :  113 (   4 sgn  70   !;  10   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(3,axiom,
    ! [X1,X2,X3] :
      ( element(X3,powerset(cartesian_product2(X1,X2)))
     => relation(X3) ),
    file('/tmp/tmpWiNEcG/sel_SEU292+1.p_1',cc1_relset_1) ).

fof(13,axiom,
    ! [X1,X2,X3] :
      ( relation_of2(X3,X1,X2)
     => relation_dom_as_subset(X1,X2,X3) = relation_dom(X3) ),
    file('/tmp/tmpWiNEcG/sel_SEU292+1.p_1',redefinition_k4_relset_1) ).

fof(18,conjecture,
    ! [X1,X2,X3,X4] :
      ( ( function(X4)
        & quasi_total(X4,X1,X2)
        & relation_of2_as_subset(X4,X1,X2) )
     => ! [X5] :
          ( ( relation(X5)
            & function(X5) )
         => ( in(X3,X1)
           => ( X2 = empty_set
              | apply(relation_composition(X4,X5),X3) = apply(X5,apply(X4,X3)) ) ) ) ),
    file('/tmp/tmpWiNEcG/sel_SEU292+1.p_1',t21_funct_2) ).

fof(28,axiom,
    ! [X1,X2,X3] :
      ( relation_of2_as_subset(X3,X1,X2)
    <=> relation_of2(X3,X1,X2) ),
    file('/tmp/tmpWiNEcG/sel_SEU292+1.p_1',redefinition_m2_relset_1) ).

fof(33,axiom,
    ! [X1,X2,X3] :
      ( relation_of2_as_subset(X3,X1,X2)
     => element(X3,powerset(cartesian_product2(X1,X2))) ),
    file('/tmp/tmpWiNEcG/sel_SEU292+1.p_1',dt_m2_relset_1) ).

fof(41,axiom,
    ! [X1,X2] :
      ( ( relation(X2)
        & function(X2) )
     => ! [X3] :
          ( ( relation(X3)
            & function(X3) )
         => ( in(X1,relation_dom(X2))
           => apply(relation_composition(X2,X3),X1) = apply(X3,apply(X2,X1)) ) ) ),
    file('/tmp/tmpWiNEcG/sel_SEU292+1.p_1',t23_funct_1) ).

fof(55,axiom,
    ! [X1,X2,X3] :
      ( relation_of2_as_subset(X3,X1,X2)
     => ( ( ( X2 = empty_set
           => X1 = empty_set )
         => ( quasi_total(X3,X1,X2)
          <=> X1 = relation_dom_as_subset(X1,X2,X3) ) )
        & ( X2 = empty_set
         => ( X1 = empty_set
            | ( quasi_total(X3,X1,X2)
            <=> X3 = empty_set ) ) ) ) ),
    file('/tmp/tmpWiNEcG/sel_SEU292+1.p_1',d1_funct_2) ).

fof(57,negated_conjecture,
    ~ ! [X1,X2,X3,X4] :
        ( ( function(X4)
          & quasi_total(X4,X1,X2)
          & relation_of2_as_subset(X4,X1,X2) )
       => ! [X5] :
            ( ( relation(X5)
              & function(X5) )
           => ( in(X3,X1)
             => ( X2 = empty_set
                | apply(relation_composition(X4,X5),X3) = apply(X5,apply(X4,X3)) ) ) ) ),
    inference(assume_negation,[status(cth)],[18]) ).

fof(74,plain,
    ! [X1,X2,X3] :
      ( ~ element(X3,powerset(cartesian_product2(X1,X2)))
      | relation(X3) ),
    inference(fof_nnf,[status(thm)],[3]) ).

fof(75,plain,
    ! [X4,X5,X6] :
      ( ~ element(X6,powerset(cartesian_product2(X4,X5)))
      | relation(X6) ),
    inference(variable_rename,[status(thm)],[74]) ).

cnf(76,plain,
    ( relation(X1)
    | ~ element(X1,powerset(cartesian_product2(X2,X3))) ),
    inference(split_conjunct,[status(thm)],[75]) ).

fof(114,plain,
    ! [X1,X2,X3] :
      ( ~ relation_of2(X3,X1,X2)
      | relation_dom_as_subset(X1,X2,X3) = relation_dom(X3) ),
    inference(fof_nnf,[status(thm)],[13]) ).

fof(115,plain,
    ! [X4,X5,X6] :
      ( ~ relation_of2(X6,X4,X5)
      | relation_dom_as_subset(X4,X5,X6) = relation_dom(X6) ),
    inference(variable_rename,[status(thm)],[114]) ).

cnf(116,plain,
    ( relation_dom_as_subset(X1,X2,X3) = relation_dom(X3)
    | ~ relation_of2(X3,X1,X2) ),
    inference(split_conjunct,[status(thm)],[115]) ).

fof(128,negated_conjecture,
    ? [X1,X2,X3,X4] :
      ( function(X4)
      & quasi_total(X4,X1,X2)
      & relation_of2_as_subset(X4,X1,X2)
      & ? [X5] :
          ( relation(X5)
          & function(X5)
          & in(X3,X1)
          & X2 != empty_set
          & apply(relation_composition(X4,X5),X3) != apply(X5,apply(X4,X3)) ) ),
    inference(fof_nnf,[status(thm)],[57]) ).

fof(129,negated_conjecture,
    ? [X6,X7,X8,X9] :
      ( function(X9)
      & quasi_total(X9,X6,X7)
      & relation_of2_as_subset(X9,X6,X7)
      & ? [X10] :
          ( relation(X10)
          & function(X10)
          & in(X8,X6)
          & X7 != empty_set
          & apply(relation_composition(X9,X10),X8) != apply(X10,apply(X9,X8)) ) ),
    inference(variable_rename,[status(thm)],[128]) ).

fof(130,negated_conjecture,
    ( function(esk11_0)
    & quasi_total(esk11_0,esk8_0,esk9_0)
    & relation_of2_as_subset(esk11_0,esk8_0,esk9_0)
    & relation(esk12_0)
    & function(esk12_0)
    & in(esk10_0,esk8_0)
    & esk9_0 != empty_set
    & apply(relation_composition(esk11_0,esk12_0),esk10_0) != apply(esk12_0,apply(esk11_0,esk10_0)) ),
    inference(skolemize,[status(esa)],[129]) ).

cnf(131,negated_conjecture,
    apply(relation_composition(esk11_0,esk12_0),esk10_0) != apply(esk12_0,apply(esk11_0,esk10_0)),
    inference(split_conjunct,[status(thm)],[130]) ).

cnf(132,negated_conjecture,
    esk9_0 != empty_set,
    inference(split_conjunct,[status(thm)],[130]) ).

cnf(133,negated_conjecture,
    in(esk10_0,esk8_0),
    inference(split_conjunct,[status(thm)],[130]) ).

cnf(134,negated_conjecture,
    function(esk12_0),
    inference(split_conjunct,[status(thm)],[130]) ).

cnf(135,negated_conjecture,
    relation(esk12_0),
    inference(split_conjunct,[status(thm)],[130]) ).

cnf(136,negated_conjecture,
    relation_of2_as_subset(esk11_0,esk8_0,esk9_0),
    inference(split_conjunct,[status(thm)],[130]) ).

cnf(137,negated_conjecture,
    quasi_total(esk11_0,esk8_0,esk9_0),
    inference(split_conjunct,[status(thm)],[130]) ).

cnf(138,negated_conjecture,
    function(esk11_0),
    inference(split_conjunct,[status(thm)],[130]) ).

fof(167,plain,
    ! [X1,X2,X3] :
      ( ( ~ relation_of2_as_subset(X3,X1,X2)
        | relation_of2(X3,X1,X2) )
      & ( ~ relation_of2(X3,X1,X2)
        | relation_of2_as_subset(X3,X1,X2) ) ),
    inference(fof_nnf,[status(thm)],[28]) ).

fof(168,plain,
    ! [X4,X5,X6] :
      ( ( ~ relation_of2_as_subset(X6,X4,X5)
        | relation_of2(X6,X4,X5) )
      & ( ~ relation_of2(X6,X4,X5)
        | relation_of2_as_subset(X6,X4,X5) ) ),
    inference(variable_rename,[status(thm)],[167]) ).

cnf(169,plain,
    ( relation_of2_as_subset(X1,X2,X3)
    | ~ relation_of2(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[168]) ).

cnf(170,plain,
    ( relation_of2(X1,X2,X3)
    | ~ relation_of2_as_subset(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[168]) ).

fof(181,plain,
    ! [X1,X2,X3] :
      ( ~ relation_of2_as_subset(X3,X1,X2)
      | element(X3,powerset(cartesian_product2(X1,X2))) ),
    inference(fof_nnf,[status(thm)],[33]) ).

fof(182,plain,
    ! [X4,X5,X6] :
      ( ~ relation_of2_as_subset(X6,X4,X5)
      | element(X6,powerset(cartesian_product2(X4,X5))) ),
    inference(variable_rename,[status(thm)],[181]) ).

cnf(183,plain,
    ( element(X1,powerset(cartesian_product2(X2,X3)))
    | ~ relation_of2_as_subset(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[182]) ).

fof(208,plain,
    ! [X1,X2] :
      ( ~ relation(X2)
      | ~ function(X2)
      | ! [X3] :
          ( ~ relation(X3)
          | ~ function(X3)
          | ~ in(X1,relation_dom(X2))
          | apply(relation_composition(X2,X3),X1) = apply(X3,apply(X2,X1)) ) ),
    inference(fof_nnf,[status(thm)],[41]) ).

fof(209,plain,
    ! [X4,X5] :
      ( ~ relation(X5)
      | ~ function(X5)
      | ! [X6] :
          ( ~ relation(X6)
          | ~ function(X6)
          | ~ in(X4,relation_dom(X5))
          | apply(relation_composition(X5,X6),X4) = apply(X6,apply(X5,X4)) ) ),
    inference(variable_rename,[status(thm)],[208]) ).

fof(210,plain,
    ! [X4,X5,X6] :
      ( ~ relation(X6)
      | ~ function(X6)
      | ~ in(X4,relation_dom(X5))
      | apply(relation_composition(X5,X6),X4) = apply(X6,apply(X5,X4))
      | ~ relation(X5)
      | ~ function(X5) ),
    inference(shift_quantors,[status(thm)],[209]) ).

cnf(211,plain,
    ( apply(relation_composition(X1,X2),X3) = apply(X2,apply(X1,X3))
    | ~ function(X1)
    | ~ relation(X1)
    | ~ in(X3,relation_dom(X1))
    | ~ function(X2)
    | ~ relation(X2) ),
    inference(split_conjunct,[status(thm)],[210]) ).

fof(250,plain,
    ! [X1,X2,X3] :
      ( ~ relation_of2_as_subset(X3,X1,X2)
      | ( ( ( X2 = empty_set
            & X1 != empty_set )
          | ( ( ~ quasi_total(X3,X1,X2)
              | X1 = relation_dom_as_subset(X1,X2,X3) )
            & ( X1 != relation_dom_as_subset(X1,X2,X3)
              | quasi_total(X3,X1,X2) ) ) )
        & ( X2 != empty_set
          | X1 = empty_set
          | ( ( ~ quasi_total(X3,X1,X2)
              | X3 = empty_set )
            & ( X3 != empty_set
              | quasi_total(X3,X1,X2) ) ) ) ) ),
    inference(fof_nnf,[status(thm)],[55]) ).

fof(251,plain,
    ! [X4,X5,X6] :
      ( ~ relation_of2_as_subset(X6,X4,X5)
      | ( ( ( X5 = empty_set
            & X4 != empty_set )
          | ( ( ~ quasi_total(X6,X4,X5)
              | X4 = relation_dom_as_subset(X4,X5,X6) )
            & ( X4 != relation_dom_as_subset(X4,X5,X6)
              | quasi_total(X6,X4,X5) ) ) )
        & ( X5 != empty_set
          | X4 = empty_set
          | ( ( ~ quasi_total(X6,X4,X5)
              | X6 = empty_set )
            & ( X6 != empty_set
              | quasi_total(X6,X4,X5) ) ) ) ) ),
    inference(variable_rename,[status(thm)],[250]) ).

fof(252,plain,
    ! [X4,X5,X6] :
      ( ( ~ quasi_total(X6,X4,X5)
        | X4 = relation_dom_as_subset(X4,X5,X6)
        | X5 = empty_set
        | ~ relation_of2_as_subset(X6,X4,X5) )
      & ( X4 != relation_dom_as_subset(X4,X5,X6)
        | quasi_total(X6,X4,X5)
        | X5 = empty_set
        | ~ relation_of2_as_subset(X6,X4,X5) )
      & ( ~ quasi_total(X6,X4,X5)
        | X4 = relation_dom_as_subset(X4,X5,X6)
        | X4 != empty_set
        | ~ relation_of2_as_subset(X6,X4,X5) )
      & ( X4 != relation_dom_as_subset(X4,X5,X6)
        | quasi_total(X6,X4,X5)
        | X4 != empty_set
        | ~ relation_of2_as_subset(X6,X4,X5) )
      & ( ~ quasi_total(X6,X4,X5)
        | X6 = empty_set
        | X4 = empty_set
        | X5 != empty_set
        | ~ relation_of2_as_subset(X6,X4,X5) )
      & ( X6 != empty_set
        | quasi_total(X6,X4,X5)
        | X4 = empty_set
        | X5 != empty_set
        | ~ relation_of2_as_subset(X6,X4,X5) ) ),
    inference(distribute,[status(thm)],[251]) ).

cnf(258,plain,
    ( X3 = empty_set
    | X2 = relation_dom_as_subset(X2,X3,X1)
    | ~ relation_of2_as_subset(X1,X2,X3)
    | ~ quasi_total(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[252]) ).

cnf(312,plain,
    ( relation(X1)
    | ~ relation_of2_as_subset(X1,X2,X3) ),
    inference(spm,[status(thm)],[76,183,theory(equality)]) ).

cnf(318,plain,
    ( X1 = relation_dom(X3)
    | empty_set = X2
    | ~ relation_of2(X3,X1,X2)
    | ~ relation_of2_as_subset(X3,X1,X2)
    | ~ quasi_total(X3,X1,X2) ),
    inference(spm,[status(thm)],[116,258,theory(equality)]) ).

cnf(332,negated_conjecture,
    ( ~ in(esk10_0,relation_dom(esk11_0))
    | ~ function(esk12_0)
    | ~ function(esk11_0)
    | ~ relation(esk12_0)
    | ~ relation(esk11_0) ),
    inference(spm,[status(thm)],[131,211,theory(equality)]) ).

cnf(335,negated_conjecture,
    ( ~ in(esk10_0,relation_dom(esk11_0))
    | $false
    | ~ function(esk11_0)
    | ~ relation(esk12_0)
    | ~ relation(esk11_0) ),
    inference(rw,[status(thm)],[332,134,theory(equality)]) ).

cnf(336,negated_conjecture,
    ( ~ in(esk10_0,relation_dom(esk11_0))
    | $false
    | $false
    | ~ relation(esk12_0)
    | ~ relation(esk11_0) ),
    inference(rw,[status(thm)],[335,138,theory(equality)]) ).

cnf(337,negated_conjecture,
    ( ~ in(esk10_0,relation_dom(esk11_0))
    | $false
    | $false
    | $false
    | ~ relation(esk11_0) ),
    inference(rw,[status(thm)],[336,135,theory(equality)]) ).

cnf(338,negated_conjecture,
    ( ~ in(esk10_0,relation_dom(esk11_0))
    | ~ relation(esk11_0) ),
    inference(cn,[status(thm)],[337,theory(equality)]) ).

cnf(386,negated_conjecture,
    relation(esk11_0),
    inference(spm,[status(thm)],[312,136,theory(equality)]) ).

cnf(388,negated_conjecture,
    ( ~ in(esk10_0,relation_dom(esk11_0))
    | $false ),
    inference(rw,[status(thm)],[338,386,theory(equality)]) ).

cnf(389,negated_conjecture,
    ~ in(esk10_0,relation_dom(esk11_0)),
    inference(cn,[status(thm)],[388,theory(equality)]) ).

cnf(564,plain,
    ( X1 = relation_dom(X3)
    | empty_set = X2
    | ~ quasi_total(X3,X1,X2)
    | ~ relation_of2(X3,X1,X2) ),
    inference(csr,[status(thm)],[318,169]) ).

cnf(568,plain,
    ( X1 = relation_dom(X2)
    | empty_set = X3
    | ~ quasi_total(X2,X1,X3)
    | ~ relation_of2_as_subset(X2,X1,X3) ),
    inference(spm,[status(thm)],[564,170,theory(equality)]) ).

cnf(3454,negated_conjecture,
    ( esk8_0 = relation_dom(esk11_0)
    | empty_set = esk9_0
    | ~ relation_of2_as_subset(esk11_0,esk8_0,esk9_0) ),
    inference(spm,[status(thm)],[568,137,theory(equality)]) ).

cnf(3463,negated_conjecture,
    ( esk8_0 = relation_dom(esk11_0)
    | empty_set = esk9_0
    | $false ),
    inference(rw,[status(thm)],[3454,136,theory(equality)]) ).

cnf(3464,negated_conjecture,
    ( esk8_0 = relation_dom(esk11_0)
    | empty_set = esk9_0 ),
    inference(cn,[status(thm)],[3463,theory(equality)]) ).

cnf(3465,negated_conjecture,
    relation_dom(esk11_0) = esk8_0,
    inference(sr,[status(thm)],[3464,132,theory(equality)]) ).

cnf(3488,negated_conjecture,
    $false,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[389,3465,theory(equality)]),133,theory(equality)]) ).

cnf(3489,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[3488,theory(equality)]) ).

cnf(3490,negated_conjecture,
    $false,
    3489,
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % SZS status Started for /home/graph/tptp/TPTP/Problems/SEU/SEU292+1.p
% --creating new selector for []
% -running prover on /tmp/tmpWiNEcG/sel_SEU292+1.p_1 with time limit 29
% -prover status Theorem
% Problem SEU292+1.p solved in phase 0.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/SEU/SEU292+1.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/SEU/SEU292+1.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
% 
%------------------------------------------------------------------------------