TSTP Solution File: SEU275+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SEU275+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Tue Jul 19 07:12:03 EDT 2022

% Result   : Theorem 0.69s 1.09s
% Output   : Refutation 0.69s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : SEU275+1 : TPTP v8.1.0. Released v3.3.0.
% 0.11/0.13  % Command  : bliksem %s
% 0.13/0.34  % Computer : n013.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % DateTime : Sun Jun 19 03:06:44 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.69/1.09  *** allocated 10000 integers for termspace/termends
% 0.69/1.09  *** allocated 10000 integers for clauses
% 0.69/1.09  *** allocated 10000 integers for justifications
% 0.69/1.09  Bliksem 1.12
% 0.69/1.09  
% 0.69/1.09  
% 0.69/1.09  Automatic Strategy Selection
% 0.69/1.09  
% 0.69/1.09  
% 0.69/1.09  Clauses:
% 0.69/1.09  
% 0.69/1.09  { ! ordinal( X ), epsilon_transitive( X ) }.
% 0.69/1.09  { ! ordinal( X ), epsilon_connected( X ) }.
% 0.69/1.09  { ! epsilon_transitive( X ), ! epsilon_connected( X ), ordinal( X ) }.
% 0.69/1.09  { ! relation( X ), ! well_ordering( X ), reflexive( X ) }.
% 0.69/1.09  { ! relation( X ), ! well_ordering( X ), alpha1( X ) }.
% 0.69/1.09  { ! relation( X ), ! reflexive( X ), ! alpha1( X ), well_ordering( X ) }.
% 0.69/1.09  { ! alpha1( X ), transitive( X ) }.
% 0.69/1.09  { ! alpha1( X ), alpha2( X ) }.
% 0.69/1.09  { ! transitive( X ), ! alpha2( X ), alpha1( X ) }.
% 0.69/1.09  { ! alpha2( X ), antisymmetric( X ) }.
% 0.69/1.09  { ! alpha2( X ), alpha3( X ) }.
% 0.69/1.09  { ! antisymmetric( X ), ! alpha3( X ), alpha2( X ) }.
% 0.69/1.09  { ! alpha3( X ), connected( X ) }.
% 0.69/1.09  { ! alpha3( X ), well_founded_relation( X ) }.
% 0.69/1.09  { ! connected( X ), ! well_founded_relation( X ), alpha3( X ) }.
% 0.69/1.09  { relation( inclusion_relation( X ) ) }.
% 0.69/1.09  { epsilon_transitive( skol1 ) }.
% 0.69/1.09  { epsilon_connected( skol1 ) }.
% 0.69/1.09  { ordinal( skol1 ) }.
% 0.69/1.09  { reflexive( inclusion_relation( X ) ) }.
% 0.69/1.09  { transitive( inclusion_relation( X ) ) }.
% 0.69/1.09  { ! ordinal( X ), connected( inclusion_relation( X ) ) }.
% 0.69/1.09  { antisymmetric( inclusion_relation( X ) ) }.
% 0.69/1.09  { ! ordinal( X ), well_founded_relation( inclusion_relation( X ) ) }.
% 0.69/1.09  { ordinal( skol2 ) }.
% 0.69/1.09  { ! well_ordering( inclusion_relation( skol2 ) ) }.
% 0.69/1.09  
% 0.69/1.09  percentage equality = 0.000000, percentage horn = 1.000000
% 0.69/1.09  This is a near-Horn, non-equality  problem
% 0.69/1.09  
% 0.69/1.09  
% 0.69/1.09  Options Used:
% 0.69/1.09  
% 0.69/1.09  useres =            1
% 0.69/1.09  useparamod =        0
% 0.69/1.09  useeqrefl =         0
% 0.69/1.09  useeqfact =         0
% 0.69/1.09  usefactor =         1
% 0.69/1.09  usesimpsplitting =  0
% 0.69/1.09  usesimpdemod =      0
% 0.69/1.09  usesimpres =        4
% 0.69/1.09  
% 0.69/1.09  resimpinuse      =  1000
% 0.69/1.09  resimpclauses =     20000
% 0.69/1.09  substype =          standard
% 0.69/1.09  backwardsubs =      1
% 0.69/1.09  selectoldest =      5
% 0.69/1.09  
% 0.69/1.09  litorderings [0] =  split
% 0.69/1.09  litorderings [1] =  liftord
% 0.69/1.09  
% 0.69/1.09  termordering =      none
% 0.69/1.09  
% 0.69/1.09  litapriori =        1
% 0.69/1.09  termapriori =       0
% 0.69/1.09  litaposteriori =    0
% 0.69/1.09  termaposteriori =   0
% 0.69/1.09  demodaposteriori =  0
% 0.69/1.09  ordereqreflfact =   0
% 0.69/1.09  
% 0.69/1.09  litselect =         negative
% 0.69/1.09  
% 0.69/1.09  maxweight =         30000
% 0.69/1.09  maxdepth =          30000
% 0.69/1.09  maxlength =         115
% 0.69/1.09  maxnrvars =         195
% 0.69/1.09  excuselevel =       0
% 0.69/1.09  increasemaxweight = 0
% 0.69/1.09  
% 0.69/1.09  maxselected =       10000000
% 0.69/1.09  maxnrclauses =      10000000
% 0.69/1.09  
% 0.69/1.09  showgenerated =    0
% 0.69/1.09  showkept =         0
% 0.69/1.09  showselected =     0
% 0.69/1.09  showdeleted =      0
% 0.69/1.09  showresimp =       1
% 0.69/1.09  showstatus =       2000
% 0.69/1.09  
% 0.69/1.09  prologoutput =     0
% 0.69/1.09  nrgoals =          5000000
% 0.69/1.09  totalproof =       1
% 0.69/1.09  
% 0.69/1.09  Symbols occurring in the translation:
% 0.69/1.09  
% 0.69/1.09  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.69/1.09  .  [1, 2]      (w:1, o:28, a:1, s:1, b:0), 
% 0.69/1.09  !  [4, 1]      (w:1, o:9, a:1, s:1, b:0), 
% 0.69/1.09  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.69/1.09  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.69/1.09  ordinal  [36, 1]      (w:1, o:14, a:1, s:1, b:0), 
% 0.69/1.09  epsilon_transitive  [37, 1]      (w:1, o:15, a:1, s:1, b:0), 
% 0.69/1.09  epsilon_connected  [38, 1]      (w:1, o:16, a:1, s:1, b:0), 
% 0.69/1.09  relation  [39, 1]      (w:1, o:17, a:1, s:1, b:0), 
% 0.69/1.09  well_ordering  [40, 1]      (w:1, o:18, a:1, s:1, b:0), 
% 0.69/1.09  reflexive  [41, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.69/1.09  transitive  [42, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.69/1.09  antisymmetric  [43, 1]      (w:1, o:21, a:1, s:1, b:0), 
% 0.69/1.09  connected  [44, 1]      (w:1, o:22, a:1, s:1, b:0), 
% 0.69/1.09  well_founded_relation  [45, 1]      (w:1, o:23, a:1, s:1, b:0), 
% 0.69/1.09  inclusion_relation  [46, 1]      (w:1, o:24, a:1, s:1, b:0), 
% 0.69/1.09  alpha1  [47, 1]      (w:1, o:25, a:1, s:1, b:0), 
% 0.69/1.09  alpha2  [48, 1]      (w:1, o:26, a:1, s:1, b:0), 
% 0.69/1.09  alpha3  [49, 1]      (w:1, o:27, a:1, s:1, b:0), 
% 0.69/1.09  skol1  [50, 0]      (w:1, o:7, a:1, s:1, b:0), 
% 0.69/1.09  skol2  [51, 0]      (w:1, o:8, a:1, s:1, b:0).
% 0.69/1.09  
% 0.69/1.09  
% 0.69/1.09  Starting Search:
% 0.69/1.09  
% 0.69/1.09  
% 0.69/1.09  Bliksems!, er is een bewijs:
% 0.69/1.09  % SZS status Theorem
% 0.69/1.09  % SZS output start Refutation
% 0.69/1.09  
% 0.69/1.09  (5) {G0,W11,D2,L4,V1,M1} I { ! alpha1( X ), ! reflexive( X ), well_ordering
% 0.69/1.09    ( X ), ! relation( X ) }.
% 0.69/1.09  (8) {G0,W8,D2,L3,V1,M1} I { ! alpha2( X ), alpha1( X ), ! transitive( X )
% 0.69/1.09     }.
% 0.69/1.09  (11) {G0,W8,D2,L3,V1,M1} I { ! alpha3( X ), alpha2( X ), ! antisymmetric( X
% 0.69/1.09     ) }.
% 0.69/1.09  (14) {G0,W8,D2,L3,V1,M1} I { alpha3( X ), ! well_founded_relation( X ), ! 
% 0.69/1.09    connected( X ) }.
% 0.69/1.09  (15) {G0,W3,D3,L1,V1,M1} I { relation( inclusion_relation( X ) ) }.
% 0.69/1.09  (19) {G0,W3,D3,L1,V1,M1} I { reflexive( inclusion_relation( X ) ) }.
% 0.69/1.09  (20) {G0,W3,D3,L1,V1,M1} I { transitive( inclusion_relation( X ) ) }.
% 0.69/1.09  (21) {G0,W6,D3,L2,V1,M1} I { connected( inclusion_relation( X ) ), ! 
% 0.69/1.09    ordinal( X ) }.
% 0.69/1.09  (22) {G0,W3,D3,L1,V1,M1} I { antisymmetric( inclusion_relation( X ) ) }.
% 0.69/1.09  (23) {G0,W6,D3,L2,V1,M1} I { well_founded_relation( inclusion_relation( X )
% 0.69/1.09     ), ! ordinal( X ) }.
% 0.69/1.09  (24) {G0,W2,D2,L1,V0,M1} I { ordinal( skol2 ) }.
% 0.69/1.09  (25) {G0,W4,D3,L1,V0,M1} I { ! well_ordering( inclusion_relation( skol2 ) )
% 0.69/1.09     }.
% 0.69/1.09  (29) {G1,W3,D3,L1,V0,M1} R(23,24) { well_founded_relation( 
% 0.69/1.09    inclusion_relation( skol2 ) ) }.
% 0.69/1.09  (31) {G1,W3,D3,L1,V0,M1} R(21,24) { connected( inclusion_relation( skol2 )
% 0.69/1.09     ) }.
% 0.69/1.09  (33) {G2,W3,D3,L1,V0,M1} R(14,31);r(29) { alpha3( inclusion_relation( skol2
% 0.69/1.09     ) ) }.
% 0.69/1.09  (35) {G1,W7,D3,L2,V1,M1} R(5,15);r(19) { well_ordering( inclusion_relation
% 0.69/1.09    ( X ) ), ! alpha1( inclusion_relation( X ) ) }.
% 0.69/1.09  (36) {G1,W7,D3,L2,V1,M1} R(11,22) { alpha2( inclusion_relation( X ) ), ! 
% 0.69/1.09    alpha3( inclusion_relation( X ) ) }.
% 0.69/1.09  (37) {G1,W7,D3,L2,V1,M1} R(8,20) { alpha1( inclusion_relation( X ) ), ! 
% 0.69/1.09    alpha2( inclusion_relation( X ) ) }.
% 0.69/1.09  (39) {G3,W3,D3,L1,V0,M1} R(36,33) { alpha2( inclusion_relation( skol2 ) )
% 0.69/1.09     }.
% 0.69/1.09  (42) {G4,W3,D3,L1,V0,M1} R(39,37) { alpha1( inclusion_relation( skol2 ) )
% 0.69/1.09     }.
% 0.69/1.09  (43) {G5,W0,D0,L0,V0,M0} R(42,35);r(25) {  }.
% 0.69/1.09  
% 0.69/1.09  
% 0.69/1.09  % SZS output end Refutation
% 0.69/1.09  found a proof!
% 0.69/1.09  
% 0.69/1.09  
% 0.69/1.09  Unprocessed initial clauses:
% 0.69/1.09  
% 0.69/1.09  (45) {G0,W5,D2,L2,V1,M2}  { ! ordinal( X ), epsilon_transitive( X ) }.
% 0.69/1.09  (46) {G0,W5,D2,L2,V1,M2}  { ! ordinal( X ), epsilon_connected( X ) }.
% 0.69/1.09  (47) {G0,W8,D2,L3,V1,M3}  { ! epsilon_transitive( X ), ! epsilon_connected
% 0.69/1.09    ( X ), ordinal( X ) }.
% 0.69/1.09  (48) {G0,W8,D2,L3,V1,M3}  { ! relation( X ), ! well_ordering( X ), 
% 0.69/1.09    reflexive( X ) }.
% 0.69/1.09  (49) {G0,W8,D2,L3,V1,M3}  { ! relation( X ), ! well_ordering( X ), alpha1( 
% 0.69/1.09    X ) }.
% 0.69/1.09  (50) {G0,W11,D2,L4,V1,M4}  { ! relation( X ), ! reflexive( X ), ! alpha1( X
% 0.69/1.09     ), well_ordering( X ) }.
% 0.69/1.09  (51) {G0,W5,D2,L2,V1,M2}  { ! alpha1( X ), transitive( X ) }.
% 0.69/1.09  (52) {G0,W5,D2,L2,V1,M2}  { ! alpha1( X ), alpha2( X ) }.
% 0.69/1.09  (53) {G0,W8,D2,L3,V1,M3}  { ! transitive( X ), ! alpha2( X ), alpha1( X )
% 0.69/1.09     }.
% 0.69/1.09  (54) {G0,W5,D2,L2,V1,M2}  { ! alpha2( X ), antisymmetric( X ) }.
% 0.69/1.09  (55) {G0,W5,D2,L2,V1,M2}  { ! alpha2( X ), alpha3( X ) }.
% 0.69/1.09  (56) {G0,W8,D2,L3,V1,M3}  { ! antisymmetric( X ), ! alpha3( X ), alpha2( X
% 0.69/1.09     ) }.
% 0.69/1.09  (57) {G0,W5,D2,L2,V1,M2}  { ! alpha3( X ), connected( X ) }.
% 0.69/1.09  (58) {G0,W5,D2,L2,V1,M2}  { ! alpha3( X ), well_founded_relation( X ) }.
% 0.69/1.09  (59) {G0,W8,D2,L3,V1,M3}  { ! connected( X ), ! well_founded_relation( X )
% 0.69/1.09    , alpha3( X ) }.
% 0.69/1.09  (60) {G0,W3,D3,L1,V1,M1}  { relation( inclusion_relation( X ) ) }.
% 0.69/1.09  (61) {G0,W2,D2,L1,V0,M1}  { epsilon_transitive( skol1 ) }.
% 0.69/1.09  (62) {G0,W2,D2,L1,V0,M1}  { epsilon_connected( skol1 ) }.
% 0.69/1.09  (63) {G0,W2,D2,L1,V0,M1}  { ordinal( skol1 ) }.
% 0.69/1.09  (64) {G0,W3,D3,L1,V1,M1}  { reflexive( inclusion_relation( X ) ) }.
% 0.69/1.09  (65) {G0,W3,D3,L1,V1,M1}  { transitive( inclusion_relation( X ) ) }.
% 0.69/1.09  (66) {G0,W6,D3,L2,V1,M2}  { ! ordinal( X ), connected( inclusion_relation( 
% 0.69/1.09    X ) ) }.
% 0.69/1.09  (67) {G0,W3,D3,L1,V1,M1}  { antisymmetric( inclusion_relation( X ) ) }.
% 0.69/1.09  (68) {G0,W6,D3,L2,V1,M2}  { ! ordinal( X ), well_founded_relation( 
% 0.69/1.09    inclusion_relation( X ) ) }.
% 0.69/1.09  (69) {G0,W2,D2,L1,V0,M1}  { ordinal( skol2 ) }.
% 0.69/1.09  (70) {G0,W4,D3,L1,V0,M1}  { ! well_ordering( inclusion_relation( skol2 ) )
% 0.69/1.09     }.
% 0.69/1.09  
% 0.69/1.09  
% 0.69/1.09  Total Proof:
% 0.69/1.09  
% 0.69/1.09  subsumption: (5) {G0,W11,D2,L4,V1,M1} I { ! alpha1( X ), ! reflexive( X ), 
% 0.69/1.09    well_ordering( X ), ! relation( X ) }.
% 0.69/1.09  parent0: (50) {G0,W11,D2,L4,V1,M4}  { ! relation( X ), ! reflexive( X ), ! 
% 0.69/1.09    alpha1( X ), well_ordering( X ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 3
% 0.69/1.09     1 ==> 1
% 0.69/1.09     2 ==> 0
% 0.69/1.09     3 ==> 2
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (8) {G0,W8,D2,L3,V1,M1} I { ! alpha2( X ), alpha1( X ), ! 
% 0.69/1.09    transitive( X ) }.
% 0.69/1.09  parent0: (53) {G0,W8,D2,L3,V1,M3}  { ! transitive( X ), ! alpha2( X ), 
% 0.69/1.09    alpha1( X ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 2
% 0.69/1.09     1 ==> 0
% 0.69/1.09     2 ==> 1
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (11) {G0,W8,D2,L3,V1,M1} I { ! alpha3( X ), alpha2( X ), ! 
% 0.69/1.09    antisymmetric( X ) }.
% 0.69/1.09  parent0: (56) {G0,W8,D2,L3,V1,M3}  { ! antisymmetric( X ), ! alpha3( X ), 
% 0.69/1.09    alpha2( X ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 2
% 0.69/1.09     1 ==> 0
% 0.69/1.09     2 ==> 1
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (14) {G0,W8,D2,L3,V1,M1} I { alpha3( X ), ! 
% 0.69/1.09    well_founded_relation( X ), ! connected( X ) }.
% 0.69/1.09  parent0: (59) {G0,W8,D2,L3,V1,M3}  { ! connected( X ), ! 
% 0.69/1.09    well_founded_relation( X ), alpha3( X ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 2
% 0.69/1.09     1 ==> 1
% 0.69/1.09     2 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (15) {G0,W3,D3,L1,V1,M1} I { relation( inclusion_relation( X )
% 0.69/1.09     ) }.
% 0.69/1.09  parent0: (60) {G0,W3,D3,L1,V1,M1}  { relation( inclusion_relation( X ) )
% 0.69/1.09     }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (19) {G0,W3,D3,L1,V1,M1} I { reflexive( inclusion_relation( X
% 0.69/1.09     ) ) }.
% 0.69/1.09  parent0: (64) {G0,W3,D3,L1,V1,M1}  { reflexive( inclusion_relation( X ) )
% 0.69/1.09     }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (20) {G0,W3,D3,L1,V1,M1} I { transitive( inclusion_relation( X
% 0.69/1.09     ) ) }.
% 0.69/1.09  parent0: (65) {G0,W3,D3,L1,V1,M1}  { transitive( inclusion_relation( X ) )
% 0.69/1.09     }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (21) {G0,W6,D3,L2,V1,M1} I { connected( inclusion_relation( X
% 0.69/1.09     ) ), ! ordinal( X ) }.
% 0.69/1.09  parent0: (66) {G0,W6,D3,L2,V1,M2}  { ! ordinal( X ), connected( 
% 0.69/1.09    inclusion_relation( X ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 1
% 0.69/1.09     1 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (22) {G0,W3,D3,L1,V1,M1} I { antisymmetric( inclusion_relation
% 0.69/1.09    ( X ) ) }.
% 0.69/1.09  parent0: (67) {G0,W3,D3,L1,V1,M1}  { antisymmetric( inclusion_relation( X )
% 0.69/1.09     ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (23) {G0,W6,D3,L2,V1,M1} I { well_founded_relation( 
% 0.69/1.09    inclusion_relation( X ) ), ! ordinal( X ) }.
% 0.69/1.09  parent0: (68) {G0,W6,D3,L2,V1,M2}  { ! ordinal( X ), well_founded_relation
% 0.69/1.09    ( inclusion_relation( X ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 1
% 0.69/1.09     1 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (24) {G0,W2,D2,L1,V0,M1} I { ordinal( skol2 ) }.
% 0.69/1.09  parent0: (69) {G0,W2,D2,L1,V0,M1}  { ordinal( skol2 ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (25) {G0,W4,D3,L1,V0,M1} I { ! well_ordering( 
% 0.69/1.09    inclusion_relation( skol2 ) ) }.
% 0.69/1.09  parent0: (70) {G0,W4,D3,L1,V0,M1}  { ! well_ordering( inclusion_relation( 
% 0.69/1.09    skol2 ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (71) {G1,W3,D3,L1,V0,M1}  { well_founded_relation( 
% 0.69/1.09    inclusion_relation( skol2 ) ) }.
% 0.69/1.09  parent0[1]: (23) {G0,W6,D3,L2,V1,M1} I { well_founded_relation( 
% 0.69/1.09    inclusion_relation( X ) ), ! ordinal( X ) }.
% 0.69/1.09  parent1[0]: (24) {G0,W2,D2,L1,V0,M1} I { ordinal( skol2 ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := skol2
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (29) {G1,W3,D3,L1,V0,M1} R(23,24) { well_founded_relation( 
% 0.69/1.09    inclusion_relation( skol2 ) ) }.
% 0.69/1.09  parent0: (71) {G1,W3,D3,L1,V0,M1}  { well_founded_relation( 
% 0.69/1.09    inclusion_relation( skol2 ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (72) {G1,W3,D3,L1,V0,M1}  { connected( inclusion_relation( 
% 0.69/1.09    skol2 ) ) }.
% 0.69/1.09  parent0[1]: (21) {G0,W6,D3,L2,V1,M1} I { connected( inclusion_relation( X )
% 0.69/1.09     ), ! ordinal( X ) }.
% 0.69/1.09  parent1[0]: (24) {G0,W2,D2,L1,V0,M1} I { ordinal( skol2 ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := skol2
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (31) {G1,W3,D3,L1,V0,M1} R(21,24) { connected( 
% 0.69/1.09    inclusion_relation( skol2 ) ) }.
% 0.69/1.09  parent0: (72) {G1,W3,D3,L1,V0,M1}  { connected( inclusion_relation( skol2 )
% 0.69/1.09     ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (73) {G1,W7,D3,L2,V0,M2}  { alpha3( inclusion_relation( skol2 )
% 0.69/1.09     ), ! well_founded_relation( inclusion_relation( skol2 ) ) }.
% 0.69/1.09  parent0[2]: (14) {G0,W8,D2,L3,V1,M1} I { alpha3( X ), ! 
% 0.69/1.09    well_founded_relation( X ), ! connected( X ) }.
% 0.69/1.09  parent1[0]: (31) {G1,W3,D3,L1,V0,M1} R(21,24) { connected( 
% 0.69/1.09    inclusion_relation( skol2 ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := inclusion_relation( skol2 )
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (74) {G2,W3,D3,L1,V0,M1}  { alpha3( inclusion_relation( skol2 )
% 0.69/1.09     ) }.
% 0.69/1.09  parent0[1]: (73) {G1,W7,D3,L2,V0,M2}  { alpha3( inclusion_relation( skol2 )
% 0.69/1.09     ), ! well_founded_relation( inclusion_relation( skol2 ) ) }.
% 0.69/1.09  parent1[0]: (29) {G1,W3,D3,L1,V0,M1} R(23,24) { well_founded_relation( 
% 0.69/1.09    inclusion_relation( skol2 ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (33) {G2,W3,D3,L1,V0,M1} R(14,31);r(29) { alpha3( 
% 0.69/1.09    inclusion_relation( skol2 ) ) }.
% 0.69/1.09  parent0: (74) {G2,W3,D3,L1,V0,M1}  { alpha3( inclusion_relation( skol2 ) )
% 0.69/1.09     }.
% 0.69/1.09  substitution0:
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (75) {G1,W11,D3,L3,V1,M3}  { ! alpha1( inclusion_relation( X )
% 0.69/1.09     ), ! reflexive( inclusion_relation( X ) ), well_ordering( 
% 0.69/1.09    inclusion_relation( X ) ) }.
% 0.69/1.09  parent0[3]: (5) {G0,W11,D2,L4,V1,M1} I { ! alpha1( X ), ! reflexive( X ), 
% 0.69/1.09    well_ordering( X ), ! relation( X ) }.
% 0.69/1.09  parent1[0]: (15) {G0,W3,D3,L1,V1,M1} I { relation( inclusion_relation( X )
% 0.69/1.09     ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := inclusion_relation( X )
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (76) {G1,W7,D3,L2,V1,M2}  { ! alpha1( inclusion_relation( X ) )
% 0.69/1.09    , well_ordering( inclusion_relation( X ) ) }.
% 0.69/1.09  parent0[1]: (75) {G1,W11,D3,L3,V1,M3}  { ! alpha1( inclusion_relation( X )
% 0.69/1.09     ), ! reflexive( inclusion_relation( X ) ), well_ordering( 
% 0.69/1.09    inclusion_relation( X ) ) }.
% 0.69/1.09  parent1[0]: (19) {G0,W3,D3,L1,V1,M1} I { reflexive( inclusion_relation( X )
% 0.69/1.09     ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (35) {G1,W7,D3,L2,V1,M1} R(5,15);r(19) { well_ordering( 
% 0.69/1.09    inclusion_relation( X ) ), ! alpha1( inclusion_relation( X ) ) }.
% 0.69/1.09  parent0: (76) {G1,W7,D3,L2,V1,M2}  { ! alpha1( inclusion_relation( X ) ), 
% 0.69/1.09    well_ordering( inclusion_relation( X ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 1
% 0.69/1.09     1 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (77) {G1,W7,D3,L2,V1,M2}  { ! alpha3( inclusion_relation( X ) )
% 0.69/1.09    , alpha2( inclusion_relation( X ) ) }.
% 0.69/1.09  parent0[2]: (11) {G0,W8,D2,L3,V1,M1} I { ! alpha3( X ), alpha2( X ), ! 
% 0.69/1.09    antisymmetric( X ) }.
% 0.69/1.09  parent1[0]: (22) {G0,W3,D3,L1,V1,M1} I { antisymmetric( inclusion_relation
% 0.69/1.09    ( X ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := inclusion_relation( X )
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (36) {G1,W7,D3,L2,V1,M1} R(11,22) { alpha2( inclusion_relation
% 0.69/1.09    ( X ) ), ! alpha3( inclusion_relation( X ) ) }.
% 0.69/1.09  parent0: (77) {G1,W7,D3,L2,V1,M2}  { ! alpha3( inclusion_relation( X ) ), 
% 0.69/1.09    alpha2( inclusion_relation( X ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 1
% 0.69/1.09     1 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (78) {G1,W7,D3,L2,V1,M2}  { ! alpha2( inclusion_relation( X ) )
% 0.69/1.09    , alpha1( inclusion_relation( X ) ) }.
% 0.69/1.09  parent0[2]: (8) {G0,W8,D2,L3,V1,M1} I { ! alpha2( X ), alpha1( X ), ! 
% 0.69/1.09    transitive( X ) }.
% 0.69/1.09  parent1[0]: (20) {G0,W3,D3,L1,V1,M1} I { transitive( inclusion_relation( X
% 0.69/1.09     ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := inclusion_relation( X )
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (37) {G1,W7,D3,L2,V1,M1} R(8,20) { alpha1( inclusion_relation
% 0.69/1.09    ( X ) ), ! alpha2( inclusion_relation( X ) ) }.
% 0.69/1.09  parent0: (78) {G1,W7,D3,L2,V1,M2}  { ! alpha2( inclusion_relation( X ) ), 
% 0.69/1.09    alpha1( inclusion_relation( X ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := X
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 1
% 0.69/1.09     1 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (79) {G2,W3,D3,L1,V0,M1}  { alpha2( inclusion_relation( skol2 )
% 0.69/1.09     ) }.
% 0.69/1.09  parent0[1]: (36) {G1,W7,D3,L2,V1,M1} R(11,22) { alpha2( inclusion_relation
% 0.69/1.09    ( X ) ), ! alpha3( inclusion_relation( X ) ) }.
% 0.69/1.09  parent1[0]: (33) {G2,W3,D3,L1,V0,M1} R(14,31);r(29) { alpha3( 
% 0.69/1.09    inclusion_relation( skol2 ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := skol2
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (39) {G3,W3,D3,L1,V0,M1} R(36,33) { alpha2( inclusion_relation
% 0.69/1.09    ( skol2 ) ) }.
% 0.69/1.09  parent0: (79) {G2,W3,D3,L1,V0,M1}  { alpha2( inclusion_relation( skol2 ) )
% 0.69/1.09     }.
% 0.69/1.09  substitution0:
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (80) {G2,W3,D3,L1,V0,M1}  { alpha1( inclusion_relation( skol2 )
% 0.69/1.09     ) }.
% 0.69/1.09  parent0[1]: (37) {G1,W7,D3,L2,V1,M1} R(8,20) { alpha1( inclusion_relation( 
% 0.69/1.09    X ) ), ! alpha2( inclusion_relation( X ) ) }.
% 0.69/1.09  parent1[0]: (39) {G3,W3,D3,L1,V0,M1} R(36,33) { alpha2( inclusion_relation
% 0.69/1.09    ( skol2 ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := skol2
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (42) {G4,W3,D3,L1,V0,M1} R(39,37) { alpha1( inclusion_relation
% 0.69/1.09    ( skol2 ) ) }.
% 0.69/1.09  parent0: (80) {G2,W3,D3,L1,V0,M1}  { alpha1( inclusion_relation( skol2 ) )
% 0.69/1.09     }.
% 0.69/1.09  substitution0:
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09     0 ==> 0
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (81) {G2,W3,D3,L1,V0,M1}  { well_ordering( inclusion_relation( 
% 0.69/1.09    skol2 ) ) }.
% 0.69/1.09  parent0[1]: (35) {G1,W7,D3,L2,V1,M1} R(5,15);r(19) { well_ordering( 
% 0.69/1.09    inclusion_relation( X ) ), ! alpha1( inclusion_relation( X ) ) }.
% 0.69/1.09  parent1[0]: (42) {G4,W3,D3,L1,V0,M1} R(39,37) { alpha1( inclusion_relation
% 0.69/1.09    ( skol2 ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09     X := skol2
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  resolution: (82) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.69/1.09  parent0[0]: (25) {G0,W4,D3,L1,V0,M1} I { ! well_ordering( 
% 0.69/1.09    inclusion_relation( skol2 ) ) }.
% 0.69/1.09  parent1[0]: (81) {G2,W3,D3,L1,V0,M1}  { well_ordering( inclusion_relation( 
% 0.69/1.09    skol2 ) ) }.
% 0.69/1.09  substitution0:
% 0.69/1.09  end
% 0.69/1.09  substitution1:
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  subsumption: (43) {G5,W0,D0,L0,V0,M0} R(42,35);r(25) {  }.
% 0.69/1.09  parent0: (82) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.69/1.09  substitution0:
% 0.69/1.09  end
% 0.69/1.09  permutation0:
% 0.69/1.09  end
% 0.69/1.09  
% 0.69/1.09  Proof check complete!
% 0.69/1.09  
% 0.69/1.09  Memory use:
% 0.69/1.09  
% 0.69/1.09  space for terms:        510
% 0.69/1.09  space for clauses:      2314
% 0.69/1.09  
% 0.69/1.09  
% 0.69/1.09  clauses generated:      59
% 0.69/1.09  clauses kept:           44
% 0.69/1.09  clauses selected:       42
% 0.69/1.09  clauses deleted:        0
% 0.69/1.09  clauses inuse deleted:  0
% 0.69/1.09  
% 0.69/1.09  subsentry:          15
% 0.69/1.09  literals s-matched: 15
% 0.69/1.09  literals matched:   15
% 0.69/1.09  full subsumption:   0
% 0.69/1.09  
% 0.69/1.09  checksum:           2110522181
% 0.69/1.09  
% 0.69/1.09  
% 0.69/1.09  Bliksem ended
%------------------------------------------------------------------------------