TSTP Solution File: SEU270+2 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : SEU270+2 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 16:30:32 EDT 2023

% Result   : Theorem 33.21s 33.53s
% Output   : Proof 33.35s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.15  % Problem    : SEU270+2 : TPTP v8.1.2. Released v3.3.0.
% 0.16/0.16  % Command    : do_cvc5 %s %d
% 0.16/0.37  % Computer : n019.cluster.edu
% 0.16/0.37  % Model    : x86_64 x86_64
% 0.16/0.37  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.16/0.37  % Memory   : 8042.1875MB
% 0.16/0.37  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.16/0.37  % CPULimit   : 300
% 0.16/0.37  % WCLimit    : 300
% 0.16/0.37  % DateTime   : Wed Aug 23 15:21:59 EDT 2023
% 0.16/0.37  % CPUTime    : 
% 0.23/0.51  %----Proving TF0_NAR, FOF, or CNF
% 33.21/33.53  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.MHyCNO6FZi/cvc5---1.0.5_5340.p...
% 33.21/33.53  ------- get file name : TPTP file name is SEU270+2
% 33.21/33.53  ------- cvc5-fof : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_5340.smt2...
% 33.21/33.53  --- Run --decision=internal --simplification=none --no-inst-no-entail --no-cbqi --full-saturate-quant at 10...
% 33.21/33.53  --- Run --no-e-matching --full-saturate-quant at 5...
% 33.21/33.53  --- Run --no-e-matching --enum-inst-sum --full-saturate-quant at 5...
% 33.21/33.53  --- Run --finite-model-find --uf-ss=no-minimal at 5...
% 33.21/33.53  --- Run --multi-trigger-when-single --full-saturate-quant at 5...
% 33.21/33.53  --- Run --trigger-sel=max --full-saturate-quant at 5...
% 33.21/33.53  % SZS status Theorem for SEU270+2
% 33.21/33.53  % SZS output start Proof for SEU270+2
% 33.21/33.53  (
% 33.21/33.53  (let ((_let_1 (not (forall ((A $$unsorted)) (=> (tptp.ordinal A) (tptp.connected (tptp.inclusion_relation A))))))) (let ((_let_2 (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.ordinal B) (=> (tptp.in A B) (tptp.ordinal A)))))) (let ((_let_3 (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.ordinal A) (tptp.ordinal B)) (= (tptp.ordinal_subset A B) (tptp.subset A B)))))) (let ((_let_4 (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.connected A) (forall ((B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.relation_field A))) (not (and (tptp.in B _let_1) (tptp.in C _let_1) (not (= B C)) (not (tptp.in (tptp.ordered_pair B C) A)) (not (tptp.in (tptp.ordered_pair C B) A))))))))))) (let ((_let_5 (tptp.relation tptp.empty_set))) (let ((_let_6 (tptp.empty tptp.empty_set))) (let ((_let_7 (tptp.relation_empty_yielding tptp.empty_set))) (let ((_let_8 (forall ((A $$unsorted)) (tptp.relation (tptp.inclusion_relation A))))) (let ((_let_9 (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (= B (tptp.inclusion_relation A)) (and (= (tptp.relation_field B) A) (forall ((C $$unsorted) (D $$unsorted)) (=> (and (tptp.in C A) (tptp.in D A)) (= (tptp.in (tptp.ordered_pair C D) B) (tptp.subset C D)))))))))) (let ((_let_10 (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.ordinal A) (tptp.ordinal B)) (or (tptp.ordinal_subset A B) (tptp.ordinal_subset B A)))))) (let ((_let_11 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.ordinal A)) (not (tptp.ordinal B)) (tptp.ordinal_subset A B) (tptp.ordinal_subset B A))))) (let ((_let_12 (tptp.ordinal_subset SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32))) (let ((_let_13 (tptp.ordinal_subset SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33))) (let ((_let_14 (tptp.ordinal SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33))) (let ((_let_15 (not _let_14))) (let ((_let_16 (tptp.ordinal SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32))) (let ((_let_17 (not _let_16))) (let ((_let_18 (or _let_17 _let_15 _let_13 _let_12))) (let ((_let_19 (EQ_RESOLVE (ASSUME :args (_let_10)) (MACRO_SR_EQ_INTRO :args (_let_10 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_20 (not _let_18))) (let ((_let_21 (tptp.subset SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32))) (let ((_let_22 (= _let_21 _let_12))) (let ((_let_23 (not _let_12))) (let ((_let_24 (or _let_15 _let_17 _let_22))) (let ((_let_25 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.ordinal A)) (not (tptp.ordinal B)) (= (tptp.ordinal_subset A B) (tptp.subset A B)))))) (let ((_let_26 (EQ_RESOLVE (ASSUME :args (_let_3)) (MACRO_SR_EQ_INTRO :args (_let_3 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_27 (_let_25))) (let ((_let_28 ((tptp.subset A B)))) (let ((_let_29 (tptp.inclusion_relation SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_14))) (let ((_let_30 (tptp.relation_field _let_29))) (let ((_let_31 (tptp.in SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 _let_30))) (let ((_let_32 (not _let_31))) (let ((_let_33 (tptp.ordinal _let_30))) (let ((_let_34 (not _let_33))) (let ((_let_35 (or _let_34 _let_32 _let_14))) (let ((_let_36 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.ordinal B)) (not (tptp.in A B)) (tptp.ordinal A))))) (let ((_let_37 (EQ_RESOLVE (ASSUME :args (_let_2)) (MACRO_SR_EQ_INTRO :args (_let_2 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_38 (_let_36))) (let ((_let_39 ((not (= (tptp.in A B) false))))) (let ((_let_40 (= SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_14 _let_30))) (let ((_let_41 (tptp.ordinal SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_14))) (let ((_let_42 (forall ((C $$unsorted) (D $$unsorted)) (or (not (tptp.in C SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_14)) (not (tptp.in D SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_14)) (= (tptp.subset C D) (tptp.in (tptp.ordered_pair C D) (tptp.inclusion_relation SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_14))))))) (let ((_let_43 (and _let_40 _let_42))) (let ((_let_44 (tptp.relation _let_29))) (let ((_let_45 (not _let_44))) (let ((_let_46 (or _let_45 _let_43))) (let ((_let_47 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.relation B)) (= (= B (tptp.inclusion_relation A)) (and (= A (tptp.relation_field B)) (forall ((C $$unsorted) (D $$unsorted)) (or (not (tptp.in C A)) (not (tptp.in D A)) (= (tptp.in (tptp.ordered_pair C D) B) (tptp.subset C D)))))))))) (let ((_let_48 (EQ_RESOLVE (ASSUME :args (_let_9)) (MACRO_SR_EQ_INTRO :args (_let_9 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_49 (_let_8))) (let ((_let_50 (ASSUME :args _let_49))) (let ((_let_51 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_50 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_14 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_49)) _let_50 :args (_let_44 false _let_8)))) (let ((_let_52 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_46)) :args ((or _let_45 _let_43 (not _let_46)))) _let_51 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE _let_48 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_14 _let_29 QUANTIFIERS_INST_CBQI_PROP)) :args (_let_47)))) _let_48 :args (_let_46 false _let_47)) :args (_let_43 false _let_44 false _let_46)))) (let ((_let_53 (not _let_43))) (let ((_let_54 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_AND_POS :args (_let_43 0)) :args ((or _let_40 _let_53))) _let_52 :args (_let_40 false _let_43)))) (let ((_let_55 (tptp.connected _let_29))) (let ((_let_56 (not _let_41))) (let ((_let_57 (or _let_56 _let_55))) (let ((_let_58 (forall ((A $$unsorted)) (or (not (tptp.ordinal A)) (tptp.connected (tptp.inclusion_relation A)))))) (let ((_let_59 (not _let_57))) (let ((_let_60 (EQ_RESOLVE (ASSUME :args (_let_1)) (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_61 (or))) (let ((_let_62 (not _let_58))) (let ((_let_63 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_60) :args (_let_62))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_62) _let_58))) (REFL :args (_let_59)) :args _let_61)) _let_60 :args (_let_59 true _let_58)))) (let ((_let_64 (and _let_41 _let_40))) (let ((_let_65 (_let_41 _let_40))) (let ((_let_66 (ASSUME :args (_let_41)))) (let ((_let_67 (ASSUME :args (_let_40)))) (let ((_let_68 (SYMM _let_67))) (let ((_let_69 (MACRO_RESOLUTION_TRUST (RESOLUTION (CNF_AND_NEG :args (_let_64)) (IMPLIES_ELIM (SCOPE (MODUS_PONENS (AND_INTRO _let_66 _let_67) (SCOPE (TRUE_ELIM (TRANS (CONG _let_68 :args (APPLY_UF tptp.ordinal)) (TRUE_INTRO _let_66))) :args _let_65)) :args _let_65)) :args (true _let_64)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_57 0)) (CONG (REFL :args (_let_57)) (MACRO_SR_PRED_INTRO :args ((= (not _let_56) _let_41))) :args _let_61)) :args ((or _let_41 _let_57))) _let_63 :args (_let_41 true _let_57)) _let_54 :args (_let_33 false _let_41 false _let_40)))) (let ((_let_70 (tptp.in (tptp.ordered_pair SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32) _let_29))) (let ((_let_71 (tptp.in (tptp.ordered_pair SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33) _let_29))) (let ((_let_72 (tptp.in SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 _let_30))) (let ((_let_73 (not _let_72))) (let ((_let_74 (or _let_73 _let_32 (= SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33) _let_71 _let_70))) (let ((_let_75 (forall ((B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.inclusion_relation SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_14))) (let ((_let_2 (tptp.relation_field _let_1))) (or (not (tptp.in B _let_2)) (not (tptp.in C _let_2)) (= B C) (tptp.in (tptp.ordered_pair B C) _let_1) (tptp.in (tptp.ordered_pair C B) _let_1))))))) (let ((_let_76 (not _let_74))) (let ((_let_77 (= _let_55 _let_75))) (let ((_let_78 (not _let_75))) (let ((_let_79 (or _let_45 _let_77))) (let ((_let_80 (forall ((A $$unsorted)) (or (not (tptp.relation A)) (= (tptp.connected A) (forall ((B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.relation_field A))) (or (not (tptp.in B _let_1)) (not (tptp.in C _let_1)) (= B C) (tptp.in (tptp.ordered_pair B C) A) (tptp.in (tptp.ordered_pair C B) A))))))))) (let ((_let_81 (EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO :args (_let_4 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_82 (_let_78))) (let ((_let_83 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE (ASSUME :args _let_82)) :args _let_82)) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_78) _let_75))) (REFL :args (_let_76)) :args _let_61)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_POS2 :args (_let_77)) :args ((or _let_55 _let_78 (not _let_77)))) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_57 1)) _let_63 :args ((not _let_55) true _let_57)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_79)) :args ((or _let_45 _let_77 (not _let_79)))) _let_51 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_81 :args (_let_29 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((tptp.connected A)))) :args (_let_80))) _let_81 :args (_let_79 false _let_80)) :args (_let_77 false _let_44 false _let_79)) :args (_let_78 true _let_55 false _let_77)) :args (_let_76 true _let_75)))) (let ((_let_84 (REFL :args (_let_74)))) (let ((_let_85 (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_74 1)) (CONG _let_84 (MACRO_SR_PRED_INTRO :args ((= (not _let_32) _let_31))) :args _let_61)) :args ((or _let_31 _let_74))) _let_83 :args (_let_31 true _let_74)))) (let ((_let_86 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_35)) :args ((or _let_32 _let_34 _let_14 (not _let_35)))) _let_85 _let_69 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_37 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 _let_30 QUANTIFIERS_INST_E_MATCHING_SIMPLE _let_39)) :args _let_38)) _let_37 :args (_let_35 false _let_36)) :args (_let_14 false _let_31 false _let_33 false _let_35)))) (let ((_let_87 (or _let_34 _let_73 _let_16))) (let ((_let_88 (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_74 0)) (CONG _let_84 (MACRO_SR_PRED_INTRO :args ((= (not _let_73) _let_72))) :args _let_61)) :args ((or _let_72 _let_74))) _let_83 :args (_let_72 true _let_74)))) (let ((_let_89 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_87)) :args ((or _let_73 _let_34 _let_16 (not _let_87)))) _let_88 _let_69 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_37 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 _let_30 QUANTIFIERS_INST_E_MATCHING_SIMPLE _let_39)) :args _let_38)) _let_37 :args (_let_87 false _let_36)) :args (_let_16 false _let_72 false _let_33 false _let_87)))) (let ((_let_90 (= _let_70 _let_21))) (let ((_let_91 (not _let_21))) (let ((_let_92 (tptp.in SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_14))) (let ((_let_93 (not _let_92))) (let ((_let_94 (tptp.in SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_14))) (let ((_let_95 (not _let_94))) (let ((_let_96 (or _let_95 _let_93 _let_90))) (let ((_let_97 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_AND_POS :args (_let_43 1)) :args ((or _let_42 _let_53))) _let_52 :args (_let_42 false _let_43)))) (let ((_let_98 (_let_42))) (let ((_let_99 ((tptp.in (tptp.ordered_pair C D) _let_29)))) (let ((_let_100 (ASSUME :args _let_98))) (let ((_let_101 (and _let_31 _let_40))) (let ((_let_102 (_let_31 _let_40))) (let ((_let_103 (ASSUME :args (_let_31)))) (let ((_let_104 (APPLY_UF tptp.in))) (let ((_let_105 (SYMM _let_68))) (let ((_let_106 (MACRO_RESOLUTION_TRUST (RESOLUTION (CNF_AND_NEG :args (_let_101)) (IMPLIES_ELIM (SCOPE (MODUS_PONENS (AND_INTRO _let_103 _let_67) (SCOPE (TRUE_ELIM (TRANS (CONG (REFL :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33)) _let_105 :args _let_104) (TRUE_INTRO _let_103))) :args _let_102)) :args _let_102)) :args (true _let_101)) _let_85 _let_54 :args (_let_94 false _let_31 false _let_40)))) (let ((_let_107 (and _let_72 _let_40))) (let ((_let_108 (_let_72 _let_40))) (let ((_let_109 (ASSUME :args (_let_72)))) (let ((_let_110 (MACRO_RESOLUTION_TRUST (RESOLUTION (CNF_AND_NEG :args (_let_107)) (IMPLIES_ELIM (SCOPE (MODUS_PONENS (AND_INTRO _let_109 _let_67) (SCOPE (TRUE_ELIM (TRANS (CONG (REFL :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32)) _let_105 :args _let_104) (TRUE_INTRO _let_109))) :args _let_108)) :args _let_108)) :args (true _let_107)) _let_88 _let_54 :args (_let_92 false _let_72 false _let_40)))) (let ((_let_111 (tptp.subset SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33))) (let ((_let_112 (= _let_111 _let_13))) (let ((_let_113 (not _let_13))) (let ((_let_114 (or _let_17 _let_15 _let_112))) (let ((_let_115 (= _let_71 _let_111))) (let ((_let_116 (not _let_111))) (let ((_let_117 (or _let_93 _let_95 _let_115))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_19 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 QUANTIFIERS_INST_CBQI_CONFLICT)) :args (_let_11))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_18)) :args ((or _let_17 _let_15 _let_13 _let_12 _let_20))) _let_89 _let_86 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_POS2 :args (_let_112)) :args ((or _let_111 _let_113 (not _let_112)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_POS2 :args (_let_115)) :args ((or _let_71 _let_116 (not _let_115)))) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_74 3)) _let_83 :args ((not _let_71) true _let_74)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_117)) :args ((or _let_93 _let_95 _let_115 (not _let_117)))) _let_110 _let_106 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE _let_100 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 QUANTIFIERS_INST_E_MATCHING _let_99)) :args _let_98))) _let_97 :args (_let_117 false _let_42)) :args (_let_115 false _let_92 false _let_94 false _let_117)) :args (_let_116 true _let_71 false _let_115)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_114)) :args ((or _let_17 _let_15 _let_112 (not _let_114)))) _let_89 _let_86 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE _let_26 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 QUANTIFIERS_INST_E_MATCHING_SIMPLE _let_28)) :args _let_27))) _let_26 :args (_let_114 false _let_25)) :args (_let_112 false _let_16 false _let_14 false _let_114)) :args (_let_113 true _let_111 false _let_112)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_POS2 :args (_let_22)) :args ((or _let_21 _let_23 (not _let_22)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_POS2 :args (_let_90)) :args ((or _let_70 _let_91 (not _let_90)))) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_74 4)) _let_83 :args ((not _let_70) true _let_74)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_96)) :args ((or _let_93 _let_95 _let_90 (not _let_96)))) _let_110 _let_106 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE _let_100 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 QUANTIFIERS_INST_E_MATCHING _let_99)) :args _let_98))) _let_97 :args (_let_96 false _let_42)) :args (_let_90 false _let_92 false _let_94 false _let_96)) :args (_let_91 true _let_70 false _let_90)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_24)) :args ((or _let_17 _let_15 _let_22 (not _let_24)))) _let_89 _let_86 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE _let_26 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 QUANTIFIERS_INST_E_MATCHING_SIMPLE _let_28)) :args _let_27))) _let_26 :args (_let_24 false _let_25)) :args (_let_22 false _let_16 false _let_14 false _let_24)) :args (_let_23 true _let_21 false _let_22)) :args (_let_20 false _let_16 false _let_14 true _let_13 true _let_12)) _let_19 :args (false true _let_18 false _let_11)) :args ((forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (not (tptp.in B A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.proper_subset A B) (not (tptp.proper_subset B A)))) (forall ((A $$unsorted)) (=> (tptp.empty A) (tptp.function A))) (forall ((A $$unsorted)) (=> (tptp.ordinal A) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A)))) (forall ((A $$unsorted)) (=> (tptp.empty A) (tptp.relation A))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.element C (tptp.powerset (tptp.cartesian_product2 A B))) (tptp.relation C))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.function A))) (let ((_let_2 (tptp.relation A))) (=> (and _let_2 (tptp.empty A) _let_1) (and _let_2 _let_1 (tptp.one_to_one A)))))) (forall ((A $$unsorted)) (=> (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A)) (tptp.ordinal A))) (forall ((A $$unsorted)) (=> (tptp.empty A) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A)))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.unordered_pair A B) (tptp.unordered_pair B A))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_union2 A B) (tptp.set_union2 B A))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_intersection2 A B) (tptp.set_intersection2 B A))) _let_10 (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (= B (tptp.identity_relation A)) (forall ((C $$unsorted) (D $$unsorted)) (= (tptp.in (tptp.ordered_pair C D) B) (and (tptp.in C A) (= C D))))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= A B) (and (tptp.subset A B) (tptp.subset B A)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (= C (tptp.relation_dom_restriction A B)) (forall ((D $$unsorted) (E $$unsorted)) (let ((_let_1 (tptp.ordered_pair D E))) (= (tptp.in _let_1 C) (and (tptp.in D B) (tptp.in _let_1 A)))))))))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (forall ((B $$unsorted) (C $$unsorted)) (= (= C (tptp.relation_image A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (exists ((E $$unsorted)) (and (tptp.in E (tptp.relation_dom A)) (tptp.in E B) (= D (tptp.apply A E)))))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (forall ((C $$unsorted)) (=> (tptp.relation C) (= (= C (tptp.relation_rng_restriction A B)) (forall ((D $$unsorted) (E $$unsorted)) (let ((_let_1 (tptp.ordered_pair D E))) (= (tptp.in _let_1 C) (and (tptp.in E A) (tptp.in _let_1 B)))))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.antisymmetric A) (tptp.is_antisymmetric_in A (tptp.relation_field A))))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (forall ((B $$unsorted) (C $$unsorted)) (= (= C (tptp.relation_inverse_image A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (and (tptp.in D (tptp.relation_dom A)) (tptp.in (tptp.apply A D) B)))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted) (C $$unsorted)) (= (= C (tptp.relation_image A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (exists ((E $$unsorted)) (and (tptp.in (tptp.ordered_pair E D) A) (tptp.in E B))))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted) (C $$unsorted)) (= (= C (tptp.relation_inverse_image A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (exists ((E $$unsorted)) (and (tptp.in (tptp.ordered_pair D E) A) (tptp.in E B))))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.connected A) (tptp.is_connected_in A (tptp.relation_field A))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.transitive A) (tptp.is_transitive_in A (tptp.relation_field A))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (= (= D (tptp.unordered_triple A B C)) (forall ((E $$unsorted)) (= (tptp.in E D) (not (and (not (= E A)) (not (= E B)) (not (= E C)))))))) (forall ((A $$unsorted)) (=> (exists ((B $$unsorted) (C $$unsorted)) (= A (tptp.ordered_pair B C))) (forall ((B $$unsorted)) (= (= B (tptp.pair_first A)) (forall ((C $$unsorted) (D $$unsorted)) (=> (= A (tptp.ordered_pair C D)) (= B C))))))) (forall ((A $$unsorted)) (= (tptp.succ A) (tptp.set_union2 A (tptp.singleton A)))) (forall ((A $$unsorted)) (= (tptp.relation A) (forall ((B $$unsorted)) (not (and (tptp.in B A) (forall ((C $$unsorted) (D $$unsorted)) (not (= B (tptp.ordered_pair C D))))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (= (tptp.is_reflexive_in A B) (forall ((C $$unsorted)) (=> (tptp.in C B) (tptp.in (tptp.ordered_pair C C) A))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (tptp.relation_of2 C A B) (tptp.subset C (tptp.cartesian_product2 A B)))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (= B (tptp.set_meet A)))) (let ((_let_2 (= A tptp.empty_set))) (and (=> (not _let_2) (= _let_1 (forall ((C $$unsorted)) (= (tptp.in C B) (forall ((D $$unsorted)) (=> (tptp.in D A) (tptp.in C D))))))) (=> _let_2 (= _let_1 (= B tptp.empty_set))))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= B (tptp.singleton A)) (forall ((C $$unsorted)) (= (tptp.in C B) (= C A))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted) (C $$unsorted)) (= (= C (tptp.fiber A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (and (not (= D B)) (tptp.in (tptp.ordered_pair D B) A)))))))) _let_9 (forall ((A $$unsorted)) (= (= A tptp.empty_set) (forall ((B $$unsorted)) (not (tptp.in B A))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= B (tptp.powerset A)) (forall ((C $$unsorted)) (= (tptp.in C B) (tptp.subset C A))))) (forall ((A $$unsorted)) (=> (exists ((B $$unsorted) (C $$unsorted)) (= A (tptp.ordered_pair B C))) (forall ((B $$unsorted)) (= (= B (tptp.pair_second A)) (forall ((C $$unsorted) (D $$unsorted)) (=> (= A (tptp.ordered_pair C D)) (= B D))))))) (forall ((A $$unsorted)) (= (tptp.epsilon_transitive A) (forall ((B $$unsorted)) (=> (tptp.in B A) (tptp.subset B A))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (= (= A B) (forall ((C $$unsorted) (D $$unsorted)) (let ((_let_1 (tptp.ordered_pair C D))) (= (tptp.in _let_1 A) (tptp.in _let_1 B))))))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.element B A))) (let ((_let_2 (tptp.empty A))) (and (=> (not _let_2) (= _let_1 (tptp.in B A))) (=> _let_2 (= _let_1 (tptp.empty B))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (tptp.unordered_pair A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (or (= D A) (= D B)))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.well_founded_relation A) (forall ((B $$unsorted)) (not (and (tptp.subset B (tptp.relation_field A)) (not (= B tptp.empty_set)) (forall ((C $$unsorted)) (not (and (tptp.in C B) (tptp.disjoint (tptp.fiber A C) B)))))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (tptp.set_union2 A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (or (tptp.in D A) (tptp.in D B)))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (tptp.cartesian_product2 A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (exists ((E $$unsorted) (F $$unsorted)) (and (tptp.in E A) (tptp.in F B) (= D (tptp.ordered_pair E F)))))))) (forall ((A $$unsorted)) (= (tptp.epsilon_connected A) (forall ((B $$unsorted) (C $$unsorted)) (not (and (tptp.in B A) (tptp.in C A) (not (tptp.in B C)) (not (= B C)) (not (tptp.in C B))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (= (tptp.subset A B) (forall ((C $$unsorted) (D $$unsorted)) (let ((_let_1 (tptp.ordered_pair C D))) (=> (tptp.in _let_1 A) (tptp.in _let_1 B))))))))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.subset A B) (forall ((C $$unsorted)) (=> (tptp.in C A) (tptp.in C B))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (= (tptp.is_well_founded_in A B) (forall ((C $$unsorted)) (not (and (tptp.subset C B) (not (= C tptp.empty_set)) (forall ((D $$unsorted)) (not (and (tptp.in D C) (tptp.disjoint (tptp.fiber A D) C))))))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (tptp.set_intersection2 A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (and (tptp.in D A) (tptp.in D B)))))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (forall ((B $$unsorted) (C $$unsorted)) (let ((_let_1 (= C (tptp.apply A B)))) (let ((_let_2 (tptp.in B (tptp.relation_dom A)))) (and (=> _let_2 (= _let_1 (tptp.in (tptp.ordered_pair B C) A))) (=> (not _let_2) (= _let_1 (= C tptp.empty_set))))))))) (forall ((A $$unsorted)) (= (tptp.ordinal A) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (= (= B (tptp.relation_dom A)) (forall ((C $$unsorted)) (= (tptp.in C B) (exists ((D $$unsorted)) (tptp.in (tptp.ordered_pair C D) A)))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (= (tptp.is_antisymmetric_in A B) (forall ((C $$unsorted) (D $$unsorted)) (=> (and (tptp.in C B) (tptp.in D B) (tptp.in (tptp.ordered_pair C D) A) (tptp.in (tptp.ordered_pair D C) A)) (= C D))))))) (forall ((A $$unsorted)) (= (tptp.cast_to_subset A) A)) (forall ((A $$unsorted) (B $$unsorted)) (= (= B (tptp.union A)) (forall ((C $$unsorted)) (= (tptp.in C B) (exists ((D $$unsorted)) (and (tptp.in C D) (tptp.in D A))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.well_ordering A) (and (tptp.reflexive A) (tptp.transitive A) (tptp.antisymmetric A) (tptp.connected A) (tptp.well_founded_relation A))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (tptp.set_difference A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (and (tptp.in D A) (not (tptp.in D B))))))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (forall ((B $$unsorted)) (= (= B (tptp.relation_rng A)) (forall ((C $$unsorted)) (= (tptp.in C B) (exists ((D $$unsorted)) (and (tptp.in D (tptp.relation_dom A)) (= C (tptp.apply A D)))))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (= (= B (tptp.relation_rng A)) (forall ((C $$unsorted)) (= (tptp.in C B) (exists ((D $$unsorted)) (tptp.in (tptp.ordered_pair D C) A)))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (= (tptp.subset_complement A B) (tptp.set_difference A B)))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.ordered_pair A B) (tptp.unordered_pair (tptp.unordered_pair A B) (tptp.singleton A)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (= (tptp.well_orders A B) (and (tptp.is_reflexive_in A B) (tptp.is_transitive_in A B) (tptp.is_antisymmetric_in A B) (tptp.is_connected_in A B) (tptp.is_well_founded_in A B)))))) (forall ((A $$unsorted)) (= (tptp.being_limit_ordinal A) (= A (tptp.union A)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.relation_field A) (tptp.set_union2 (tptp.relation_dom A) (tptp.relation_rng A))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (= (tptp.is_connected_in A B) (forall ((C $$unsorted) (D $$unsorted)) (not (and (tptp.in C B) (tptp.in D B) (not (= C D)) (not (tptp.in (tptp.ordered_pair C D) A)) (not (tptp.in (tptp.ordered_pair D C) A))))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (= (tptp.relation_restriction A B) (tptp.set_intersection2 A (tptp.cartesian_product2 B B)))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (= (= B (tptp.relation_inverse A)) (forall ((C $$unsorted) (D $$unsorted)) (= (tptp.in (tptp.ordered_pair C D) B) (tptp.in (tptp.ordered_pair D C) A)))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (forall ((C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (= (tptp.relation_isomorphism A B C) (and (= (tptp.relation_dom C) (tptp.relation_field A)) (= (tptp.relation_rng C) (tptp.relation_field B)) (tptp.one_to_one C) (forall ((D $$unsorted) (E $$unsorted)) (let ((_let_1 (tptp.relation_field A))) (= (tptp.in (tptp.ordered_pair D E) A) (and (tptp.in D _let_1) (tptp.in E _let_1) (tptp.in (tptp.ordered_pair (tptp.apply C D) (tptp.apply C E)) B))))))))))))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.disjoint A B) (= (tptp.set_intersection2 A B) tptp.empty_set))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (= (tptp.one_to_one A) (forall ((B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.relation_dom A))) (=> (and (tptp.in B _let_1) (tptp.in C _let_1) (= (tptp.apply A B) (tptp.apply A C))) (= B C))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (forall ((C $$unsorted)) (=> (tptp.relation C) (= (= C (tptp.relation_composition A B)) (forall ((D $$unsorted) (E $$unsorted)) (= (tptp.in (tptp.ordered_pair D E) C) (exists ((F $$unsorted)) (and (tptp.in (tptp.ordered_pair D F) A) (tptp.in (tptp.ordered_pair F E) B)))))))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (= (tptp.is_transitive_in A B) (forall ((C $$unsorted) (D $$unsorted) (E $$unsorted)) (=> (and (tptp.in C B) (tptp.in D B) (tptp.in E B) (tptp.in (tptp.ordered_pair C D) A) (tptp.in (tptp.ordered_pair D E) A)) (tptp.in (tptp.ordered_pair C E) A))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (forall ((C $$unsorted)) (=> (tptp.element C (tptp.powerset (tptp.powerset A))) (= (= C (tptp.complements_of_subsets A B)) (forall ((D $$unsorted)) (=> (tptp.element D (tptp.powerset A)) (= (tptp.in D C) (tptp.in (tptp.subset_complement A D) B))))))))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.proper_subset A B) (and (tptp.subset A B) (not (= A B))))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (=> (tptp.one_to_one A) (= (tptp.function_inverse A) (tptp.relation_inverse A))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.reflexive A) (tptp.is_reflexive_in A (tptp.relation_field A))))) true true true true true true true true true _let_8 true true (forall ((A $$unsorted)) (let ((_let_1 (tptp.function_inverse A))) (=> (and (tptp.relation A) (tptp.function A)) (and (tptp.relation _let_1) (tptp.function _let_1))))) true true (forall ((A $$unsorted)) (tptp.element (tptp.cast_to_subset A) (tptp.powerset A))) true (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation A) (tptp.relation (tptp.relation_restriction A B)))) true true true (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.powerset A))) (=> (tptp.element B _let_1) (tptp.element (tptp.subset_complement A B) _let_1)))) true true (forall ((A $$unsorted)) (=> (tptp.relation A) (tptp.relation (tptp.relation_inverse A)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation_of2 C A B) (tptp.element (tptp.relation_dom_as_subset A B C) (tptp.powerset A)))) true true (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation A) (tptp.relation B)) (tptp.relation (tptp.relation_composition A B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation_of2 C A B) (tptp.element (tptp.relation_rng_as_subset A B C) (tptp.powerset B)))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.powerset A))) (=> (tptp.element B (tptp.powerset _let_1)) (tptp.element (tptp.union_of_subsets A B) _let_1)))) (forall ((A $$unsorted)) (tptp.relation (tptp.identity_relation A))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.powerset A))) (=> (tptp.element B (tptp.powerset _let_1)) (tptp.element (tptp.meet_of_subsets A B) _let_1)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.powerset A))) (=> (and (tptp.element B _let_1) (tptp.element C _let_1)) (tptp.element (tptp.subset_difference A B C) _let_1)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation A) (tptp.relation (tptp.relation_dom_restriction A B)))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.powerset (tptp.powerset A)))) (=> (tptp.element B _let_1) (tptp.element (tptp.complements_of_subsets A B) _let_1)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.relation (tptp.relation_rng_restriction A B)))) true true true (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation_of2_as_subset C A B) (tptp.element C (tptp.powerset (tptp.cartesian_product2 A B))))) (forall ((A $$unsorted) (B $$unsorted)) (exists ((C $$unsorted)) (tptp.relation_of2 C A B))) (forall ((A $$unsorted)) (exists ((B $$unsorted)) (tptp.element B A))) (forall ((A $$unsorted) (B $$unsorted)) (exists ((C $$unsorted)) (tptp.relation_of2_as_subset C A B))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_composition B A))) (=> (and (tptp.empty A) (tptp.relation B)) (and (tptp.empty _let_1) (tptp.relation _let_1))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.relation_inverse A))) (=> (tptp.empty A) (and (tptp.empty _let_1) (tptp.relation _let_1))))) (and _let_6 _let_5 _let_7) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_dom_restriction A B))) (=> (and (tptp.relation A) (tptp.relation_empty_yielding A)) (and (tptp.relation _let_1) (tptp.relation_empty_yielding _let_1))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_composition A B))) (=> (and (tptp.relation A) (tptp.function A) (tptp.relation B) (tptp.function B)) (and (tptp.relation _let_1) (tptp.function _let_1))))) (forall ((A $$unsorted)) (not (tptp.empty (tptp.succ A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation A) (tptp.relation B)) (tptp.relation (tptp.set_intersection2 A B)))) (forall ((A $$unsorted)) (not (tptp.empty (tptp.powerset A)))) _let_6 (forall ((A $$unsorted) (B $$unsorted)) (not (tptp.empty (tptp.ordered_pair A B)))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.identity_relation A))) (and (tptp.relation _let_1) (tptp.function _let_1)))) (and _let_5 _let_7 (tptp.function tptp.empty_set) (tptp.one_to_one tptp.empty_set) _let_6 (tptp.epsilon_transitive tptp.empty_set) (tptp.epsilon_connected tptp.empty_set) (tptp.ordinal tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation A) (tptp.relation B)) (tptp.relation (tptp.set_union2 A B)))) (forall ((A $$unsorted)) (not (tptp.empty (tptp.singleton A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (tptp.empty A)) (not (tptp.empty (tptp.set_union2 A B))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.relation_inverse A))) (=> (and (tptp.relation A) (tptp.function A) (tptp.one_to_one A)) (and (tptp.relation _let_1) (tptp.function _let_1))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.succ A))) (=> (tptp.ordinal A) (and (not (tptp.empty _let_1)) (tptp.epsilon_transitive _let_1) (tptp.epsilon_connected _let_1) (tptp.ordinal _let_1))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation A) (tptp.relation B)) (tptp.relation (tptp.set_difference A B)))) (forall ((A $$unsorted) (B $$unsorted)) (not (tptp.empty (tptp.unordered_pair A B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (tptp.empty A)) (not (tptp.empty (tptp.set_union2 B A))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_dom_restriction A B))) (=> (and (tptp.relation A) (tptp.function A)) (and (tptp.relation _let_1) (tptp.function _let_1))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.union A))) (=> (tptp.ordinal A) (and (tptp.epsilon_transitive _let_1) (tptp.epsilon_connected _let_1) (tptp.ordinal _let_1))))) (and _let_6 _let_5) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (not (tptp.empty A)) (not (tptp.empty B))) (not (tptp.empty (tptp.cartesian_product2 A B))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_rng_restriction A B))) (=> (and (tptp.relation B) (tptp.function B)) (and (tptp.relation _let_1) (tptp.function _let_1))))) (forall ((A $$unsorted)) (=> (and (not (tptp.empty A)) (tptp.relation A)) (not (tptp.empty (tptp.relation_dom A))))) (forall ((A $$unsorted)) (=> (and (not (tptp.empty A)) (tptp.relation A)) (not (tptp.empty (tptp.relation_rng A))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.relation_dom A))) (=> (tptp.empty A) (and (tptp.empty _let_1) (tptp.relation _let_1))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.relation_rng A))) (=> (tptp.empty A) (and (tptp.empty _let_1) (tptp.relation _let_1))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_composition A B))) (=> (and (tptp.empty A) (tptp.relation B)) (and (tptp.empty _let_1) (tptp.relation _let_1))))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_union2 A A) A)) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_intersection2 A A) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (= (tptp.subset_complement A (tptp.subset_complement A B)) B))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.relation_inverse (tptp.relation_inverse A)) A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (= (tptp.complements_of_subsets A (tptp.complements_of_subsets A B)) B))) (forall ((A $$unsorted) (B $$unsorted)) (not (tptp.proper_subset A A))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.reflexive A) (forall ((B $$unsorted)) (=> (tptp.in B (tptp.relation_field A)) (tptp.in (tptp.ordered_pair B B) A)))))) (forall ((A $$unsorted)) (not (= (tptp.singleton A) tptp.empty_set))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (= (tptp.set_union2 (tptp.singleton A) B) B))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.disjoint (tptp.singleton A) B) (tptp.in A B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (tptp.in A B)) (tptp.disjoint (tptp.singleton A) B))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_dom (tptp.relation_rng_restriction A B)) (tptp.relation_dom B)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.transitive A) (forall ((B $$unsorted) (C $$unsorted) (D $$unsorted)) (=> (and (tptp.in (tptp.ordered_pair B C) A) (tptp.in (tptp.ordered_pair C D) A)) (tptp.in (tptp.ordered_pair B D) A)))))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.subset (tptp.singleton A) B) (tptp.in A B))) (forall ((A $$unsorted) (B $$unsorted)) (= (= (tptp.set_difference A B) tptp.empty_set) (tptp.subset A B))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (forall ((C $$unsorted)) (=> (tptp.in C B) (tptp.in C A))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.antisymmetric A) (forall ((B $$unsorted) (C $$unsorted)) (=> (and (tptp.in (tptp.ordered_pair B C) A) (tptp.in (tptp.ordered_pair C B) A)) (= B C)))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.subset A B) (or (tptp.in C A) (tptp.subset A (tptp.set_difference B (tptp.singleton C)))))) _let_4 (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.singleton B))) (= (tptp.subset A _let_1) (or (= A tptp.empty_set) (= A _let_1))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (tptp.subset A (tptp.union B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (= (tptp.in (tptp.ordered_pair A B) (tptp.cartesian_product2 C D)) (and (tptp.in A C) (tptp.in B D)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (forall ((C $$unsorted)) (=> (tptp.in C A) (tptp.in C B))) (tptp.element A (tptp.powerset B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (= (tptp.in B (tptp.relation_dom (tptp.relation_dom_restriction C A))) (and (tptp.in B (tptp.relation_dom C)) (tptp.in B A))))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A))) (exists ((A $$unsorted)) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (exists ((A $$unsorted)) (and (tptp.empty A) (tptp.relation A))) (forall ((A $$unsorted)) (=> (not (tptp.empty A)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (not (tptp.empty B)))))) (exists ((A $$unsorted)) (tptp.empty A)) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.empty A) (tptp.function A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A) (tptp.one_to_one A) (tptp.empty A) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.relation A))) (forall ((A $$unsorted)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (tptp.empty B)))) (exists ((A $$unsorted)) (not (tptp.empty A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A) (tptp.one_to_one A))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.relation_empty_yielding A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.relation_empty_yielding A) (tptp.function A))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation_of2 C A B) (= (tptp.relation_dom_as_subset A B C) (tptp.relation_dom C)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation_of2 C A B) (= (tptp.relation_rng_as_subset A B C) (tptp.relation_rng C)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (= (tptp.union_of_subsets A B) (tptp.union B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (= (tptp.meet_of_subsets A B) (tptp.set_meet B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.powerset A))) (=> (and (tptp.element B _let_1) (tptp.element C _let_1)) (= (tptp.subset_difference A B C) (tptp.set_difference B C))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (tptp.relation_of2_as_subset C A B) (tptp.relation_of2 C A B))) _let_3 (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.ordinal A) (tptp.ordinal B)) (tptp.ordinal_subset A A))) (forall ((A $$unsorted) (B $$unsorted)) (tptp.subset A A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.disjoint A B) (tptp.disjoint B A))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (= (tptp.in (tptp.ordered_pair A B) (tptp.cartesian_product2 C D)) (and (tptp.in A C) (tptp.in B D)))) (forall ((A $$unsorted)) (tptp.in A (tptp.succ A))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (not (and (= (tptp.unordered_pair A B) (tptp.unordered_pair C D)) (not (= A C)) (not (= A D))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (tptp.in A (tptp.relation_rng (tptp.relation_rng_restriction B C))) (and (tptp.in A B) (tptp.in A (tptp.relation_rng C)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_rng (tptp.relation_rng_restriction A B)) A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_rng_restriction A B) B))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_rng (tptp.relation_rng_restriction A B)) (tptp.relation_rng B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.subset A B) (and (tptp.subset (tptp.cartesian_product2 A C) (tptp.cartesian_product2 B C)) (tptp.subset (tptp.cartesian_product2 C A) (tptp.cartesian_product2 C B))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_rng (tptp.relation_rng_restriction A B)) (tptp.set_intersection2 (tptp.relation_rng B) A)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (=> (and (tptp.subset A B) (tptp.subset C D)) (tptp.subset (tptp.cartesian_product2 A C) (tptp.cartesian_product2 B D)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation_of2_as_subset C A B) (and (tptp.subset (tptp.relation_dom C) A) (tptp.subset (tptp.relation_rng C) B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.subset A B) (= (tptp.set_union2 A B) B))) (forall ((A $$unsorted)) (exists ((B $$unsorted)) (and (tptp.in A B) (forall ((C $$unsorted) (D $$unsorted)) (=> (and (tptp.in C B) (tptp.subset D C)) (tptp.in D B))) (forall ((C $$unsorted)) (=> (tptp.in C B) (tptp.in (tptp.powerset C) B))) (forall ((C $$unsorted)) (not (and (tptp.subset C B) (not (tptp.are_equipotent C B)) (not (tptp.in C B)))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (tptp.relation_dom_restriction (tptp.relation_rng_restriction A C) B) (tptp.relation_rng_restriction A (tptp.relation_dom_restriction C B))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (tptp.in A (tptp.relation_image C B)) (exists ((D $$unsorted)) (and (tptp.in D (tptp.relation_dom C)) (tptp.in (tptp.ordered_pair D A) C) (tptp.in D B)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_image B A) (tptp.relation_rng B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (tptp.subset (tptp.relation_image B (tptp.relation_inverse_image B A)) A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_image B A) (tptp.relation_image B (tptp.set_intersection2 (tptp.relation_dom B) A))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (=> (tptp.subset A (tptp.relation_dom B)) (tptp.subset A (tptp.relation_inverse_image B (tptp.relation_image B A)))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.relation_image A (tptp.relation_dom A)) (tptp.relation_rng A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (=> (tptp.subset A (tptp.relation_rng B)) (= (tptp.relation_image B (tptp.relation_inverse_image B A)) A)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (=> (tptp.relation_of2_as_subset D C A) (=> (tptp.subset (tptp.relation_rng D) B) (tptp.relation_of2_as_subset D C B)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_rng (tptp.relation_composition A B)) (tptp.relation_image B (tptp.relation_rng A))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (tptp.in A (tptp.relation_inverse_image C B)) (exists ((D $$unsorted)) (and (tptp.in D (tptp.relation_rng C)) (tptp.in (tptp.ordered_pair A D) C) (tptp.in D B)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_inverse_image B A) (tptp.relation_dom B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (=> (tptp.relation_of2_as_subset D C A) (=> (tptp.subset A B) (tptp.relation_of2_as_subset D C B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (tptp.in A (tptp.relation_restriction C B)) (and (tptp.in A C) (tptp.in A (tptp.cartesian_product2 B B)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (not (and (not (= A tptp.empty_set)) (tptp.subset A (tptp.relation_rng B)) (= (tptp.relation_inverse_image B A) tptp.empty_set))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (=> (tptp.subset A B) (tptp.subset (tptp.relation_inverse_image C A) (tptp.relation_inverse_image C B))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_restriction B A) (tptp.relation_dom_restriction (tptp.relation_rng_restriction A B) A)))) (forall ((A $$unsorted) (B $$unsorted)) (tptp.subset (tptp.set_intersection2 A B) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_restriction B A) (tptp.relation_rng_restriction A (tptp.relation_dom_restriction B A))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (=> (tptp.in A (tptp.relation_field (tptp.relation_restriction C B))) (and (tptp.in A (tptp.relation_field C)) (tptp.in A B))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.subset A C)) (tptp.subset A (tptp.set_intersection2 B C)))) (forall ((A $$unsorted)) (= (tptp.set_union2 A tptp.empty_set) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (tptp.element A B))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.subset B C)) (tptp.subset A C))) (= (tptp.powerset tptp.empty_set) (tptp.singleton tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (=> (tptp.in (tptp.ordered_pair A B) C) (and (tptp.in A (tptp.relation_dom C)) (tptp.in B (tptp.relation_rng C)))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_field (tptp.relation_restriction B A)))) (=> (tptp.relation B) (and (tptp.subset _let_1 (tptp.relation_field B)) (tptp.subset _let_1 A))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (forall ((C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (= (tptp.in A (tptp.relation_dom (tptp.relation_composition C B))) (and (tptp.in A (tptp.relation_dom C)) (tptp.in (tptp.apply C A) (tptp.relation_dom B)))))))) (forall ((A $$unsorted)) (=> (tptp.epsilon_transitive A) (forall ((B $$unsorted)) (=> (tptp.ordinal B) (=> (tptp.proper_subset A B) (tptp.in A B)))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (tptp.subset A (tptp.cartesian_product2 (tptp.relation_dom A) (tptp.relation_rng A))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (tptp.subset (tptp.fiber (tptp.relation_restriction C A) B) (tptp.fiber C B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (forall ((C $$unsorted)) (let ((_let_1 (tptp.relation_composition C B))) (=> (and (tptp.relation C) (tptp.function C)) (=> (tptp.in A (tptp.relation_dom _let_1)) (= (tptp.apply _let_1 A) (tptp.apply B (tptp.apply C A))))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation_of2_as_subset C B A) (= (forall ((D $$unsorted)) (not (and (tptp.in D B) (forall ((E $$unsorted)) (not (tptp.in (tptp.ordered_pair D E) C)))))) (= (tptp.relation_dom_as_subset B A C) B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (=> (tptp.reflexive B) (tptp.reflexive (tptp.relation_restriction B A))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (forall ((C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (=> (tptp.in A (tptp.relation_dom B)) (= (tptp.apply (tptp.relation_composition B C) A) (tptp.apply C (tptp.apply B A)))))))) _let_2 (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation_of2_as_subset C A B) (= (forall ((D $$unsorted)) (not (and (tptp.in D B) (forall ((E $$unsorted)) (not (tptp.in (tptp.ordered_pair E D) C)))))) (= (tptp.relation_rng_as_subset A B C) B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (=> (tptp.connected B) (tptp.connected (tptp.relation_restriction B A))))) (forall ((A $$unsorted)) (=> (tptp.ordinal A) (forall ((B $$unsorted)) (=> (tptp.ordinal B) (not (and (not (tptp.in A B)) (not (= A B)) (not (tptp.in B A)))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (=> (tptp.transitive B) (tptp.transitive (tptp.relation_restriction B A))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (=> (tptp.subset A B) (and (tptp.subset (tptp.relation_dom A) (tptp.relation_dom B)) (tptp.subset (tptp.relation_rng A) (tptp.relation_rng B)))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (=> (tptp.antisymmetric B) (tptp.antisymmetric (tptp.relation_restriction B A))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.subset A B) (tptp.subset (tptp.set_intersection2 A C) (tptp.set_intersection2 B C)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.subset A B) (= (tptp.set_intersection2 A B) A))) (forall ((A $$unsorted)) (= (tptp.set_intersection2 A tptp.empty_set) tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element A B) (or (tptp.empty B) (tptp.in A B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (forall ((C $$unsorted)) (= (tptp.in C A) (tptp.in C B))) (= A B))) (forall ((A $$unsorted)) (tptp.reflexive (tptp.inclusion_relation A))) (forall ((A $$unsorted)) (tptp.subset tptp.empty_set A)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.relation_field C))) (=> (tptp.relation C) (=> (tptp.in (tptp.ordered_pair A B) C) (and (tptp.in A _let_1) (tptp.in B _let_1)))))) (forall ((A $$unsorted)) (=> (forall ((B $$unsorted)) (=> (tptp.in B A) (and (tptp.ordinal B) (tptp.subset B A)))) (tptp.ordinal A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (=> (tptp.well_founded_relation B) (tptp.well_founded_relation (tptp.relation_restriction B A))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.ordinal B) (not (and (tptp.subset A B) (not (= A tptp.empty_set)) (forall ((C $$unsorted)) (=> (tptp.ordinal C) (not (and (tptp.in C A) (forall ((D $$unsorted)) (=> (tptp.ordinal D) (=> (tptp.in D A) (tptp.ordinal_subset C D)))))))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (=> (tptp.well_ordering B) (tptp.well_ordering (tptp.relation_restriction B A))))) (forall ((A $$unsorted)) (=> (tptp.ordinal A) (forall ((B $$unsorted)) (=> (tptp.ordinal B) (= (tptp.in A B) (tptp.ordinal_subset (tptp.succ A) B)))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.subset A B) (tptp.subset (tptp.set_difference A C) (tptp.set_difference B C)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (=> (= (tptp.ordered_pair A B) (tptp.ordered_pair C D)) (and (= A C) (= B D)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (= (= B (tptp.identity_relation A)) (and (= (tptp.relation_dom B) A) (forall ((C $$unsorted)) (=> (tptp.in C A) (= (tptp.apply B C) C))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in B A) (= (tptp.apply (tptp.identity_relation A) B) B))) (forall ((A $$unsorted) (B $$unsorted)) (tptp.subset (tptp.set_difference A B) A)) (forall ((A $$unsorted)) (let ((_let_1 (tptp.relation_inverse A))) (=> (tptp.relation A) (and (= (tptp.relation_rng A) (tptp.relation_dom _let_1)) (= (tptp.relation_dom A) (tptp.relation_rng _let_1)))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= (tptp.set_difference A B) tptp.empty_set) (tptp.subset A B))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.subset (tptp.singleton A) B) (tptp.in A B))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (tptp.subset (tptp.unordered_pair A B) C) (and (tptp.in A C) (tptp.in B C)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (=> (and (tptp.well_ordering B) (tptp.subset A (tptp.relation_field B))) (= (tptp.relation_field (tptp.relation_restriction B A)) A)))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_union2 A (tptp.set_difference B A)) (tptp.set_union2 A B))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.singleton B))) (= (tptp.subset A _let_1) (or (= A tptp.empty_set) (= A _let_1))))) (forall ((A $$unsorted)) (= (tptp.set_difference A tptp.empty_set) A)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (not (and (tptp.in A B) (tptp.in B C) (tptp.in C A)))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.element A (tptp.powerset B)) (tptp.subset A B))) (forall ((A $$unsorted)) (tptp.transitive (tptp.inclusion_relation A))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.disjoint A B))) (and (not (and (not _let_1) (forall ((C $$unsorted)) (not (and (tptp.in C A) (tptp.in C B)))))) (not (and (exists ((C $$unsorted)) (and (tptp.in C A) (tptp.in C B))) _let_1))))) (forall ((A $$unsorted)) (=> (tptp.subset A tptp.empty_set) (= A tptp.empty_set))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_difference (tptp.set_union2 A B) B) (tptp.set_difference A B))) (forall ((A $$unsorted)) (=> (tptp.ordinal A) (= (tptp.being_limit_ordinal A) (forall ((B $$unsorted)) (=> (tptp.ordinal B) (=> (tptp.in B A) (tptp.in (tptp.succ B) A))))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.being_limit_ordinal A))) (=> (tptp.ordinal A) (and (not (and (not _let_1) (forall ((B $$unsorted)) (=> (tptp.ordinal B) (not (= A (tptp.succ B))))))) (not (and (exists ((B $$unsorted)) (and (tptp.ordinal B) (= A (tptp.succ B)))) _let_1)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (forall ((C $$unsorted)) (=> (tptp.element C (tptp.powerset A)) (= (tptp.disjoint B C) (tptp.subset B (tptp.subset_complement A C))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_dom (tptp.relation_composition A B)) (tptp.relation_dom A)))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_rng (tptp.relation_composition A B)) (tptp.relation_rng B)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.subset A B) (= B (tptp.set_union2 A (tptp.set_difference B A))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (=> (tptp.subset (tptp.relation_rng A) (tptp.relation_dom B)) (= (tptp.relation_dom (tptp.relation_composition A B)) (tptp.relation_dom A))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (not (and (not (= B tptp.empty_set)) (= (tptp.complements_of_subsets A B) tptp.empty_set))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (= (tptp.set_union2 (tptp.singleton A) B) B))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (=> (tptp.subset (tptp.relation_dom A) (tptp.relation_rng B)) (= (tptp.relation_rng (tptp.relation_composition B A)) (tptp.relation_rng A))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (=> (not (= B tptp.empty_set)) (= (tptp.subset_difference A (tptp.cast_to_subset A) (tptp.union_of_subsets A B)) (tptp.meet_of_subsets A (tptp.complements_of_subsets A B)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (=> (not (= B tptp.empty_set)) (= (tptp.union_of_subsets A (tptp.complements_of_subsets A B)) (tptp.subset_difference A (tptp.cast_to_subset A) (tptp.meet_of_subsets A B)))))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_difference A (tptp.set_difference A B)) (tptp.set_intersection2 A B))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (forall ((C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (=> (tptp.relation_isomorphism A B C) (tptp.relation_isomorphism B A (tptp.function_inverse C))))))))) (forall ((A $$unsorted)) (= (tptp.set_difference tptp.empty_set A) tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.in A B) (tptp.element B (tptp.powerset C))) (tptp.element A C))) _let_1 (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.disjoint A B))) (and (not (and (not _let_1) (forall ((C $$unsorted)) (not (tptp.in C (tptp.set_intersection2 A B)))))) (not (and (exists ((C $$unsorted)) (tptp.in C (tptp.set_intersection2 A B))) _let_1))))) (forall ((A $$unsorted)) (=> (not (= A tptp.empty_set)) (forall ((B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (forall ((C $$unsorted)) (=> (tptp.element C A) (=> (not (tptp.in C B)) (tptp.in C (tptp.subset_complement A B))))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (forall ((C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (=> (tptp.relation_isomorphism A B C) (and (=> (tptp.reflexive A) (tptp.reflexive B)) (=> (tptp.transitive A) (tptp.transitive B)) (=> (tptp.connected A) (tptp.connected B)) (=> (tptp.antisymmetric A) (tptp.antisymmetric B)) (=> (tptp.well_founded_relation A) (tptp.well_founded_relation B)))))))))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (=> (tptp.one_to_one A) (forall ((B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (= (= B (tptp.function_inverse A)) (and (= (tptp.relation_dom B) (tptp.relation_rng A)) (forall ((C $$unsorted) (D $$unsorted)) (let ((_let_1 (and (tptp.in C (tptp.relation_rng A)) (= D (tptp.apply B C))))) (let ((_let_2 (and (tptp.in D (tptp.relation_dom A)) (= C (tptp.apply A D))))) (and (=> _let_1 _let_2) (=> _let_2 _let_1)))))))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.element C (tptp.powerset A)) (not (and (tptp.in B (tptp.subset_complement A C)) (tptp.in B C))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (forall ((C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (=> (and (tptp.well_ordering A) (tptp.relation_isomorphism A B C)) (tptp.well_ordering B)))))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.function_inverse A))) (=> (and (tptp.relation A) (tptp.function A)) (=> (tptp.one_to_one A) (and (= (tptp.relation_rng A) (tptp.relation_dom _let_1)) (= (tptp.relation_dom A) (tptp.relation_rng _let_1))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (=> (forall ((B $$unsorted) (C $$unsorted)) (not (tptp.in (tptp.ordered_pair B C) A))) (= A tptp.empty_set)))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.function_inverse B))) (=> (and (tptp.relation B) (tptp.function B)) (=> (and (tptp.one_to_one B) (tptp.in A (tptp.relation_rng B))) (and (= A (tptp.apply B (tptp.apply _let_1 A))) (= A (tptp.apply (tptp.relation_composition _let_1 B) A))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (not (and (tptp.in A B) (tptp.element B (tptp.powerset C)) (tptp.empty C)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.well_founded_relation A) (tptp.is_well_founded_in A (tptp.relation_field A))))) (and (= (tptp.relation_dom tptp.empty_set) tptp.empty_set) (= (tptp.relation_rng tptp.empty_set) tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.subset A B) (tptp.proper_subset B A)))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (=> (tptp.one_to_one A) (tptp.one_to_one (tptp.function_inverse A))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.disjoint B C)) (tptp.disjoint A C))) (forall ((A $$unsorted)) (=> (tptp.relation A) (=> (or (= (tptp.relation_dom A) tptp.empty_set) (= (tptp.relation_rng A) tptp.empty_set)) (= A tptp.empty_set)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (= (tptp.relation_dom A) tptp.empty_set) (= (tptp.relation_rng A) tptp.empty_set)))) (forall ((A $$unsorted) (B $$unsorted)) (= (= (tptp.set_difference A (tptp.singleton B)) A) (not (tptp.in B A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (forall ((C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (= (= B (tptp.relation_dom_restriction C A)) (and (= (tptp.relation_dom B) (tptp.set_intersection2 (tptp.relation_dom C) A)) (forall ((D $$unsorted)) (=> (tptp.in D (tptp.relation_dom B)) (= (tptp.apply B D) (tptp.apply C D)))))))))) (forall ((A $$unsorted)) (= (tptp.unordered_pair A A) (tptp.singleton A))) (forall ((A $$unsorted)) (=> (tptp.empty A) (= A tptp.empty_set))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.subset (tptp.singleton A) (tptp.singleton B)) (= A B))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.relation_dom_restriction C A))) (=> (and (tptp.relation C) (tptp.function C)) (=> (tptp.in B (tptp.relation_dom _let_1)) (= (tptp.apply _let_1 B) (tptp.apply C B)))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.identity_relation A))) (and (= (tptp.relation_dom _let_1) A) (= (tptp.relation_rng _let_1) A)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (=> (tptp.in B A) (= (tptp.apply (tptp.relation_dom_restriction C A) B) (tptp.apply C B))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (let ((_let_1 (tptp.ordered_pair A B))) (=> (tptp.relation D) (= (tptp.in _let_1 (tptp.relation_composition (tptp.identity_relation C) D)) (and (tptp.in A C) (tptp.in _let_1 D)))))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.in A B) (tptp.empty B)))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.ordered_pair A B))) (and (= (tptp.pair_first _let_1) A) (= (tptp.pair_second _let_1) B)))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.in A B) (forall ((C $$unsorted)) (not (and (tptp.in C B) (forall ((D $$unsorted)) (not (and (tptp.in D B) (tptp.in D C)))))))))) (forall ((A $$unsorted) (B $$unsorted)) (tptp.subset A (tptp.set_union2 A B))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.disjoint A B) (= (tptp.set_difference A B) A))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (tptp.in A (tptp.relation_dom (tptp.relation_dom_restriction C B))) (and (tptp.in A B) (tptp.in A (tptp.relation_dom C)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_dom_restriction B A) B))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.empty A) (not (= A B)) (tptp.empty B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (= (tptp.in (tptp.ordered_pair A B) C) (and (tptp.in A (tptp.relation_dom C)) (= B (tptp.apply C A)))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.well_orders A (tptp.relation_field A)) (tptp.well_ordering A)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.subset C B)) (tptp.subset (tptp.set_union2 A C) B))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (= (tptp.singleton A) (tptp.unordered_pair B C)) (= A B))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_dom (tptp.relation_dom_restriction B A)) (tptp.set_intersection2 (tptp.relation_dom B) A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (tptp.subset A (tptp.union B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_dom_restriction B A) (tptp.relation_composition (tptp.identity_relation A) B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_rng (tptp.relation_dom_restriction B A)) (tptp.relation_rng B)))) (forall ((A $$unsorted)) (= (tptp.union (tptp.powerset A)) A)) (forall ((A $$unsorted)) (exists ((B $$unsorted)) (and (tptp.in A B) (forall ((C $$unsorted) (D $$unsorted)) (=> (and (tptp.in C B) (tptp.subset D C)) (tptp.in D B))) (forall ((C $$unsorted)) (not (and (tptp.in C B) (forall ((D $$unsorted)) (not (and (tptp.in D B) (forall ((E $$unsorted)) (=> (tptp.subset E C) (tptp.in E D))))))))) (forall ((C $$unsorted)) (not (and (tptp.subset C B) (not (tptp.are_equipotent C B)) (not (tptp.in C B)))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (= (tptp.singleton A) (tptp.unordered_pair B C)) (= B C))) true))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 33.35/33.54  )
% 33.35/33.54  % SZS output end Proof for SEU270+2
% 33.35/33.54  % cvc5---1.0.5 exiting
% 33.35/33.54  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------