TSTP Solution File: SEU267+2 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SEU267+2 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n032.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 17:51:55 EDT 2023

% Result   : Theorem 36.44s 5.66s
% Output   : Proof 36.44s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem  : SEU267+2 : TPTP v8.1.2. Released v3.3.0.
% 0.00/0.11  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.11/0.31  % Computer : n032.cluster.edu
% 0.11/0.31  % Model    : x86_64 x86_64
% 0.11/0.31  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.31  % Memory   : 8042.1875MB
% 0.11/0.31  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.31  % CPULimit : 300
% 0.11/0.31  % WCLimit  : 300
% 0.11/0.31  % DateTime : Wed Aug 23 18:59:56 EDT 2023
% 0.11/0.31  % CPUTime  : 
% 36.44/5.66  Command-line arguments: --kbo-weight0 --lhs-weight 5 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10 --goal-heuristic
% 36.44/5.66  
% 36.44/5.66  % SZS status Theorem
% 36.44/5.66  
% 36.44/5.66  % SZS output start Proof
% 36.44/5.66  Take the following subset of the input axioms:
% 36.44/5.67    fof(d1_mcart_1, axiom, ![A2]: (?[B2, C2]: A2=ordered_pair(B2, C2) => ![B]: (B=pair_first(A2) <=> ![C, D]: (A2=ordered_pair(C, D) => B=C)))).
% 36.44/5.67    fof(d2_mcart_1, axiom, ![A2_2]: (?[C3, B2_2]: A2_2=ordered_pair(B2_2, C3) => ![B3]: (B3=pair_second(A2_2) <=> ![D2, C2_2]: (A2_2=ordered_pair(C2_2, D2) => B3=D2)))).
% 36.44/5.67    fof(t7_mcart_1, conjecture, ![A, B3]: (pair_first(ordered_pair(A, B3))=A & pair_second(ordered_pair(A, B3))=B3)).
% 36.44/5.67  
% 36.44/5.67  Now clausify the problem and encode Horn clauses using encoding 3 of
% 36.44/5.67  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 36.44/5.67  We repeatedly replace C & s=t => u=v by the two clauses:
% 36.44/5.67    fresh(y, y, x1...xn) = u
% 36.44/5.67    C => fresh(s, t, x1...xn) = v
% 36.44/5.67  where fresh is a fresh function symbol and x1..xn are the free
% 36.44/5.67  variables of u and v.
% 36.44/5.67  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 36.44/5.67  input problem has no model of domain size 1).
% 36.44/5.67  
% 36.44/5.67  The encoding turns the above axioms into the following unit equations and goals:
% 36.44/5.67  
% 36.44/5.67  Axiom 1 (d1_mcart_1_1): fresh983(X, X, Y, Z) = Z.
% 36.44/5.67  Axiom 2 (d2_mcart_1_1): fresh973(X, X, Y, Z) = Z.
% 36.44/5.67  Axiom 3 (d1_mcart_1_1): fresh56(X, X, Y, Z, W, V, U) = V.
% 36.44/5.67  Axiom 4 (d2_mcart_1_1): fresh46(X, X, Y, Z, W, V, U) = V.
% 36.44/5.67  Axiom 5 (d1_mcart_1_1): fresh982(X, X, Y, Z, W, V, U, T) = fresh983(Y, ordered_pair(Z, W), V, U).
% 36.44/5.67  Axiom 6 (d2_mcart_1_1): fresh972(X, X, Y, Z, W, V, U, T) = fresh973(Y, ordered_pair(Z, W), V, T).
% 36.44/5.67  Axiom 7 (d1_mcart_1_1): fresh982(X, pair_first(Y), Y, Z, W, X, V, U) = fresh56(Y, ordered_pair(V, U), Y, Z, W, X, V).
% 36.44/5.67  Axiom 8 (d2_mcart_1_1): fresh972(X, pair_second(Y), Y, Z, W, X, V, U) = fresh46(Y, ordered_pair(V, U), Y, Z, W, X, U).
% 36.44/5.67  
% 36.44/5.67  Goal 1 (t7_mcart_1): tuple6(pair_first(ordered_pair(a2, b3)), pair_second(ordered_pair(a, b2))) = tuple6(a2, b2).
% 36.44/5.67  Proof:
% 36.44/5.67    tuple6(pair_first(ordered_pair(a2, b3)), pair_second(ordered_pair(a, b2)))
% 36.44/5.67  = { by axiom 4 (d2_mcart_1_1) R->L }
% 36.44/5.67    tuple6(pair_first(ordered_pair(a2, b3)), fresh46(ordered_pair(a, b2), ordered_pair(a, b2), ordered_pair(a, b2), a, b2, pair_second(ordered_pair(a, b2)), b2))
% 36.44/5.67  = { by axiom 8 (d2_mcart_1_1) R->L }
% 36.44/5.67    tuple6(pair_first(ordered_pair(a2, b3)), fresh972(pair_second(ordered_pair(a, b2)), pair_second(ordered_pair(a, b2)), ordered_pair(a, b2), a, b2, pair_second(ordered_pair(a, b2)), a, b2))
% 36.44/5.67  = { by axiom 6 (d2_mcart_1_1) }
% 36.44/5.67    tuple6(pair_first(ordered_pair(a2, b3)), fresh973(ordered_pair(a, b2), ordered_pair(a, b2), pair_second(ordered_pair(a, b2)), b2))
% 36.44/5.67  = { by axiom 2 (d2_mcart_1_1) }
% 36.44/5.67    tuple6(pair_first(ordered_pair(a2, b3)), b2)
% 36.44/5.67  = { by axiom 3 (d1_mcart_1_1) R->L }
% 36.44/5.67    tuple6(fresh56(ordered_pair(a2, b3), ordered_pair(a2, b3), ordered_pair(a2, b3), a2, b3, pair_first(ordered_pair(a2, b3)), a2), b2)
% 36.44/5.67  = { by axiom 7 (d1_mcart_1_1) R->L }
% 36.44/5.67    tuple6(fresh982(pair_first(ordered_pair(a2, b3)), pair_first(ordered_pair(a2, b3)), ordered_pair(a2, b3), a2, b3, pair_first(ordered_pair(a2, b3)), a2, b3), b2)
% 36.44/5.67  = { by axiom 5 (d1_mcart_1_1) }
% 36.44/5.67    tuple6(fresh983(ordered_pair(a2, b3), ordered_pair(a2, b3), pair_first(ordered_pair(a2, b3)), a2), b2)
% 36.44/5.67  = { by axiom 1 (d1_mcart_1_1) }
% 36.44/5.67    tuple6(a2, b2)
% 36.44/5.67  % SZS output end Proof
% 36.44/5.67  
% 36.44/5.67  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------