TSTP Solution File: SEU261+2 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : SEU261+2 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 16:23:53 EDT 2023

% Result   : Theorem 0.76s 0.84s
% Output   : CNFRefutation 0.76s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :  194
% Syntax   : Number of formulae    :  235 (  13 unt; 190 typ;   0 def)
%            Number of atoms       :  192 (   0 equ)
%            Maximal formula atoms :   22 (   4 avg)
%            Number of connectives :  232 (  85   ~;  75   |;  37   &)
%                                         (   2 <=>;  33  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   14 (   5 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :  347 ( 174   >; 173   *;   0   +;   0  <<)
%            Number of predicates  :   31 (  30 usr;   1 prp; 0-3 aty)
%            Number of functors    :  160 ( 160 usr;  16 con; 0-5 aty)
%            Number of variables   :   42 (   0 sgn;  23   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    in: ( $i * $i ) > $o ).

tff(decl_23,type,
    proper_subset: ( $i * $i ) > $o ).

tff(decl_24,type,
    empty: $i > $o ).

tff(decl_25,type,
    function: $i > $o ).

tff(decl_26,type,
    ordinal: $i > $o ).

tff(decl_27,type,
    epsilon_transitive: $i > $o ).

tff(decl_28,type,
    epsilon_connected: $i > $o ).

tff(decl_29,type,
    relation: $i > $o ).

tff(decl_30,type,
    one_to_one: $i > $o ).

tff(decl_31,type,
    unordered_pair: ( $i * $i ) > $i ).

tff(decl_32,type,
    set_union2: ( $i * $i ) > $i ).

tff(decl_33,type,
    set_intersection2: ( $i * $i ) > $i ).

tff(decl_34,type,
    ordinal_subset: ( $i * $i ) > $o ).

tff(decl_35,type,
    identity_relation: $i > $i ).

tff(decl_36,type,
    ordered_pair: ( $i * $i ) > $i ).

tff(decl_37,type,
    subset: ( $i * $i ) > $o ).

tff(decl_38,type,
    relation_dom_restriction: ( $i * $i ) > $i ).

tff(decl_39,type,
    relation_image: ( $i * $i ) > $i ).

tff(decl_40,type,
    relation_dom: $i > $i ).

tff(decl_41,type,
    apply: ( $i * $i ) > $i ).

tff(decl_42,type,
    relation_rng_restriction: ( $i * $i ) > $i ).

tff(decl_43,type,
    antisymmetric: $i > $o ).

tff(decl_44,type,
    relation_field: $i > $i ).

tff(decl_45,type,
    is_antisymmetric_in: ( $i * $i ) > $o ).

tff(decl_46,type,
    relation_inverse_image: ( $i * $i ) > $i ).

tff(decl_47,type,
    connected: $i > $o ).

tff(decl_48,type,
    is_connected_in: ( $i * $i ) > $o ).

tff(decl_49,type,
    transitive: $i > $o ).

tff(decl_50,type,
    is_transitive_in: ( $i * $i ) > $o ).

tff(decl_51,type,
    unordered_triple: ( $i * $i * $i ) > $i ).

tff(decl_52,type,
    succ: $i > $i ).

tff(decl_53,type,
    singleton: $i > $i ).

tff(decl_54,type,
    is_reflexive_in: ( $i * $i ) > $o ).

tff(decl_55,type,
    empty_set: $i ).

tff(decl_56,type,
    set_meet: $i > $i ).

tff(decl_57,type,
    fiber: ( $i * $i ) > $i ).

tff(decl_58,type,
    powerset: $i > $i ).

tff(decl_59,type,
    element: ( $i * $i ) > $o ).

tff(decl_60,type,
    well_founded_relation: $i > $o ).

tff(decl_61,type,
    disjoint: ( $i * $i ) > $o ).

tff(decl_62,type,
    cartesian_product2: ( $i * $i ) > $i ).

tff(decl_63,type,
    is_well_founded_in: ( $i * $i ) > $o ).

tff(decl_64,type,
    cast_to_subset: $i > $i ).

tff(decl_65,type,
    union: $i > $i ).

tff(decl_66,type,
    well_ordering: $i > $o ).

tff(decl_67,type,
    reflexive: $i > $o ).

tff(decl_68,type,
    set_difference: ( $i * $i ) > $i ).

tff(decl_69,type,
    relation_rng: $i > $i ).

tff(decl_70,type,
    subset_complement: ( $i * $i ) > $i ).

tff(decl_71,type,
    well_orders: ( $i * $i ) > $o ).

tff(decl_72,type,
    being_limit_ordinal: $i > $o ).

tff(decl_73,type,
    relation_restriction: ( $i * $i ) > $i ).

tff(decl_74,type,
    relation_inverse: $i > $i ).

tff(decl_75,type,
    relation_isomorphism: ( $i * $i * $i ) > $o ).

tff(decl_76,type,
    relation_composition: ( $i * $i ) > $i ).

tff(decl_77,type,
    complements_of_subsets: ( $i * $i ) > $i ).

tff(decl_78,type,
    function_inverse: $i > $i ).

tff(decl_79,type,
    union_of_subsets: ( $i * $i ) > $i ).

tff(decl_80,type,
    meet_of_subsets: ( $i * $i ) > $i ).

tff(decl_81,type,
    subset_difference: ( $i * $i * $i ) > $i ).

tff(decl_82,type,
    relation_empty_yielding: $i > $o ).

tff(decl_83,type,
    are_equipotent: ( $i * $i ) > $o ).

tff(decl_84,type,
    epred1_2: ( $i * $i ) > $o ).

tff(decl_85,type,
    esk1_2: ( $i * $i ) > $i ).

tff(decl_86,type,
    esk2_2: ( $i * $i ) > $i ).

tff(decl_87,type,
    esk3_3: ( $i * $i * $i ) > $i ).

tff(decl_88,type,
    esk4_3: ( $i * $i * $i ) > $i ).

tff(decl_89,type,
    esk5_4: ( $i * $i * $i * $i ) > $i ).

tff(decl_90,type,
    esk6_3: ( $i * $i * $i ) > $i ).

tff(decl_91,type,
    esk7_3: ( $i * $i * $i ) > $i ).

tff(decl_92,type,
    esk8_3: ( $i * $i * $i ) > $i ).

tff(decl_93,type,
    esk9_3: ( $i * $i * $i ) > $i ).

tff(decl_94,type,
    esk10_3: ( $i * $i * $i ) > $i ).

tff(decl_95,type,
    esk11_4: ( $i * $i * $i * $i ) > $i ).

tff(decl_96,type,
    esk12_3: ( $i * $i * $i ) > $i ).

tff(decl_97,type,
    esk13_3: ( $i * $i * $i ) > $i ).

tff(decl_98,type,
    esk14_4: ( $i * $i * $i * $i ) > $i ).

tff(decl_99,type,
    esk15_3: ( $i * $i * $i ) > $i ).

tff(decl_100,type,
    esk16_3: ( $i * $i * $i ) > $i ).

tff(decl_101,type,
    esk17_4: ( $i * $i * $i * $i ) > $i ).

tff(decl_102,type,
    esk18_2: ( $i * $i ) > $i ).

tff(decl_103,type,
    esk19_2: ( $i * $i ) > $i ).

tff(decl_104,type,
    esk20_1: $i > $i ).

tff(decl_105,type,
    esk21_2: ( $i * $i ) > $i ).

tff(decl_106,type,
    esk22_3: ( $i * $i * $i ) > $i ).

tff(decl_107,type,
    esk23_2: ( $i * $i ) > $i ).

tff(decl_108,type,
    esk24_2: ( $i * $i ) > $i ).

tff(decl_109,type,
    esk25_2: ( $i * $i ) > $i ).

tff(decl_110,type,
    esk26_3: ( $i * $i * $i ) > $i ).

tff(decl_111,type,
    esk27_1: $i > $i ).

tff(decl_112,type,
    esk28_2: ( $i * $i ) > $i ).

tff(decl_113,type,
    esk29_1: $i > $i ).

tff(decl_114,type,
    esk30_2: ( $i * $i ) > $i ).

tff(decl_115,type,
    esk31_2: ( $i * $i ) > $i ).

tff(decl_116,type,
    esk32_3: ( $i * $i * $i ) > $i ).

tff(decl_117,type,
    esk33_2: ( $i * $i ) > $i ).

tff(decl_118,type,
    esk34_1: $i > $i ).

tff(decl_119,type,
    esk35_3: ( $i * $i * $i ) > $i ).

tff(decl_120,type,
    esk36_4: ( $i * $i * $i * $i ) > $i ).

tff(decl_121,type,
    esk37_4: ( $i * $i * $i * $i ) > $i ).

tff(decl_122,type,
    esk38_3: ( $i * $i * $i ) > $i ).

tff(decl_123,type,
    esk39_3: ( $i * $i * $i ) > $i ).

tff(decl_124,type,
    esk40_3: ( $i * $i * $i ) > $i ).

tff(decl_125,type,
    esk41_1: $i > $i ).

tff(decl_126,type,
    esk42_1: $i > $i ).

tff(decl_127,type,
    esk43_2: ( $i * $i ) > $i ).

tff(decl_128,type,
    esk44_2: ( $i * $i ) > $i ).

tff(decl_129,type,
    esk45_2: ( $i * $i ) > $i ).

tff(decl_130,type,
    esk46_3: ( $i * $i * $i ) > $i ).

tff(decl_131,type,
    esk47_2: ( $i * $i ) > $i ).

tff(decl_132,type,
    esk48_3: ( $i * $i * $i ) > $i ).

tff(decl_133,type,
    esk49_3: ( $i * $i * $i ) > $i ).

tff(decl_134,type,
    esk50_2: ( $i * $i ) > $i ).

tff(decl_135,type,
    esk51_2: ( $i * $i ) > $i ).

tff(decl_136,type,
    esk52_2: ( $i * $i ) > $i ).

tff(decl_137,type,
    esk53_2: ( $i * $i ) > $i ).

tff(decl_138,type,
    esk54_3: ( $i * $i * $i ) > $i ).

tff(decl_139,type,
    esk55_2: ( $i * $i ) > $i ).

tff(decl_140,type,
    esk56_2: ( $i * $i ) > $i ).

tff(decl_141,type,
    esk57_3: ( $i * $i * $i ) > $i ).

tff(decl_142,type,
    esk58_3: ( $i * $i * $i ) > $i ).

tff(decl_143,type,
    esk59_2: ( $i * $i ) > $i ).

tff(decl_144,type,
    esk60_2: ( $i * $i ) > $i ).

tff(decl_145,type,
    esk61_3: ( $i * $i * $i ) > $i ).

tff(decl_146,type,
    esk62_2: ( $i * $i ) > $i ).

tff(decl_147,type,
    esk63_2: ( $i * $i ) > $i ).

tff(decl_148,type,
    esk64_2: ( $i * $i ) > $i ).

tff(decl_149,type,
    esk65_2: ( $i * $i ) > $i ).

tff(decl_150,type,
    esk66_2: ( $i * $i ) > $i ).

tff(decl_151,type,
    esk67_2: ( $i * $i ) > $i ).

tff(decl_152,type,
    esk68_3: ( $i * $i * $i ) > $i ).

tff(decl_153,type,
    esk69_3: ( $i * $i * $i ) > $i ).

tff(decl_154,type,
    esk70_1: $i > $i ).

tff(decl_155,type,
    esk71_1: $i > $i ).

tff(decl_156,type,
    esk72_5: ( $i * $i * $i * $i * $i ) > $i ).

tff(decl_157,type,
    esk73_3: ( $i * $i * $i ) > $i ).

tff(decl_158,type,
    esk74_3: ( $i * $i * $i ) > $i ).

tff(decl_159,type,
    esk75_3: ( $i * $i * $i ) > $i ).

tff(decl_160,type,
    esk76_2: ( $i * $i ) > $i ).

tff(decl_161,type,
    esk77_2: ( $i * $i ) > $i ).

tff(decl_162,type,
    esk78_2: ( $i * $i ) > $i ).

tff(decl_163,type,
    esk79_3: ( $i * $i * $i ) > $i ).

tff(decl_164,type,
    esk80_1: $i > $i ).

tff(decl_165,type,
    esk81_1: $i > $i ).

tff(decl_166,type,
    esk82_1: $i > $i ).

tff(decl_167,type,
    esk83_1: $i > $i ).

tff(decl_168,type,
    esk84_1: $i > $i ).

tff(decl_169,type,
    esk85_1: $i > $i ).

tff(decl_170,type,
    esk86_1: $i > $i ).

tff(decl_171,type,
    esk87_1: $i > $i ).

tff(decl_172,type,
    esk88_1: $i > $i ).

tff(decl_173,type,
    esk89_2: ( $i * $i ) > $i ).

tff(decl_174,type,
    esk90_0: $i ).

tff(decl_175,type,
    esk91_0: $i ).

tff(decl_176,type,
    esk92_0: $i ).

tff(decl_177,type,
    esk93_1: $i > $i ).

tff(decl_178,type,
    esk94_0: $i ).

tff(decl_179,type,
    esk95_0: $i ).

tff(decl_180,type,
    esk96_0: $i ).

tff(decl_181,type,
    esk97_0: $i ).

tff(decl_182,type,
    esk98_1: $i > $i ).

tff(decl_183,type,
    esk99_0: $i ).

tff(decl_184,type,
    esk100_0: $i ).

tff(decl_185,type,
    esk101_0: $i ).

tff(decl_186,type,
    esk102_0: $i ).

tff(decl_187,type,
    esk103_0: $i ).

tff(decl_188,type,
    esk104_1: $i > $i ).

tff(decl_189,type,
    esk105_3: ( $i * $i * $i ) > $i ).

tff(decl_190,type,
    esk106_3: ( $i * $i * $i ) > $i ).

tff(decl_191,type,
    esk107_2: ( $i * $i ) > $i ).

tff(decl_192,type,
    esk108_1: $i > $i ).

tff(decl_193,type,
    esk109_2: ( $i * $i ) > $i ).

tff(decl_194,type,
    esk110_2: ( $i * $i ) > $i ).

tff(decl_195,type,
    esk111_2: ( $i * $i ) > $i ).

tff(decl_196,type,
    esk112_1: $i > $i ).

tff(decl_197,type,
    esk113_1: $i > $i ).

tff(decl_198,type,
    esk114_2: ( $i * $i ) > $i ).

tff(decl_199,type,
    esk115_2: ( $i * $i ) > $i ).

tff(decl_200,type,
    esk116_2: ( $i * $i ) > $i ).

tff(decl_201,type,
    esk117_2: ( $i * $i ) > $i ).

tff(decl_202,type,
    esk118_2: ( $i * $i ) > $i ).

tff(decl_203,type,
    esk119_0: $i ).

tff(decl_204,type,
    esk120_0: $i ).

tff(decl_205,type,
    esk121_0: $i ).

tff(decl_206,type,
    esk122_1: $i > $i ).

tff(decl_207,type,
    esk123_1: $i > $i ).

tff(decl_208,type,
    esk124_3: ( $i * $i * $i ) > $i ).

tff(decl_209,type,
    esk125_2: ( $i * $i ) > $i ).

tff(decl_210,type,
    esk126_1: $i > $i ).

tff(decl_211,type,
    esk127_2: ( $i * $i ) > $i ).

fof(t53_wellord1,lemma,
    ! [X1] :
      ( relation(X1)
     => ! [X2] :
          ( relation(X2)
         => ! [X3] :
              ( ( relation(X3)
                & function(X3) )
             => ( relation_isomorphism(X1,X2,X3)
               => ( ( reflexive(X1)
                   => reflexive(X2) )
                  & ( transitive(X1)
                   => transitive(X2) )
                  & ( connected(X1)
                   => connected(X2) )
                  & ( antisymmetric(X1)
                   => antisymmetric(X2) )
                  & ( well_founded_relation(X1)
                   => well_founded_relation(X2) ) ) ) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t53_wellord1) ).

fof(t54_wellord1,conjecture,
    ! [X1] :
      ( relation(X1)
     => ! [X2] :
          ( relation(X2)
         => ! [X3] :
              ( ( relation(X3)
                & function(X3) )
             => ( ( well_ordering(X1)
                  & relation_isomorphism(X1,X2,X3) )
               => well_ordering(X2) ) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t54_wellord1) ).

fof(d4_wellord1,axiom,
    ! [X1] :
      ( relation(X1)
     => ( well_ordering(X1)
      <=> ( reflexive(X1)
          & transitive(X1)
          & antisymmetric(X1)
          & connected(X1)
          & well_founded_relation(X1) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',d4_wellord1) ).

fof(c_0_3,plain,
    ! [X1,X2] :
      ( epred1_2(X2,X1)
    <=> ( ( reflexive(X1)
         => reflexive(X2) )
        & ( transitive(X1)
         => transitive(X2) )
        & ( connected(X1)
         => connected(X2) )
        & ( antisymmetric(X1)
         => antisymmetric(X2) )
        & ( well_founded_relation(X1)
         => well_founded_relation(X2) ) ) ),
    introduced(definition) ).

fof(c_0_4,lemma,
    ! [X1] :
      ( relation(X1)
     => ! [X2] :
          ( relation(X2)
         => ! [X3] :
              ( ( relation(X3)
                & function(X3) )
             => ( relation_isomorphism(X1,X2,X3)
               => epred1_2(X2,X1) ) ) ) ),
    inference(apply_def,[status(thm)],[t53_wellord1,c_0_3]) ).

fof(c_0_5,negated_conjecture,
    ~ ! [X1] :
        ( relation(X1)
       => ! [X2] :
            ( relation(X2)
           => ! [X3] :
                ( ( relation(X3)
                  & function(X3) )
               => ( ( well_ordering(X1)
                    & relation_isomorphism(X1,X2,X3) )
                 => well_ordering(X2) ) ) ) ),
    inference(assume_negation,[status(cth)],[t54_wellord1]) ).

fof(c_0_6,plain,
    ! [X1,X2] :
      ( epred1_2(X2,X1)
     => ( ( reflexive(X1)
         => reflexive(X2) )
        & ( transitive(X1)
         => transitive(X2) )
        & ( connected(X1)
         => connected(X2) )
        & ( antisymmetric(X1)
         => antisymmetric(X2) )
        & ( well_founded_relation(X1)
         => well_founded_relation(X2) ) ) ),
    inference(split_equiv,[status(thm)],[c_0_3]) ).

fof(c_0_7,lemma,
    ! [X782,X783,X784] :
      ( ~ relation(X782)
      | ~ relation(X783)
      | ~ relation(X784)
      | ~ function(X784)
      | ~ relation_isomorphism(X782,X783,X784)
      | epred1_2(X783,X782) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_4])])]) ).

fof(c_0_8,negated_conjecture,
    ( relation(esk119_0)
    & relation(esk120_0)
    & relation(esk121_0)
    & function(esk121_0)
    & well_ordering(esk119_0)
    & relation_isomorphism(esk119_0,esk120_0,esk121_0)
    & ~ well_ordering(esk120_0) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_5])])]) ).

fof(c_0_9,plain,
    ! [X285] :
      ( ( reflexive(X285)
        | ~ well_ordering(X285)
        | ~ relation(X285) )
      & ( transitive(X285)
        | ~ well_ordering(X285)
        | ~ relation(X285) )
      & ( antisymmetric(X285)
        | ~ well_ordering(X285)
        | ~ relation(X285) )
      & ( connected(X285)
        | ~ well_ordering(X285)
        | ~ relation(X285) )
      & ( well_founded_relation(X285)
        | ~ well_ordering(X285)
        | ~ relation(X285) )
      & ( ~ reflexive(X285)
        | ~ transitive(X285)
        | ~ antisymmetric(X285)
        | ~ connected(X285)
        | ~ well_founded_relation(X285)
        | well_ordering(X285)
        | ~ relation(X285) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d4_wellord1])])]) ).

fof(c_0_10,plain,
    ! [X888,X889] :
      ( ( ~ reflexive(X888)
        | reflexive(X889)
        | ~ epred1_2(X889,X888) )
      & ( ~ transitive(X888)
        | transitive(X889)
        | ~ epred1_2(X889,X888) )
      & ( ~ connected(X888)
        | connected(X889)
        | ~ epred1_2(X889,X888) )
      & ( ~ antisymmetric(X888)
        | antisymmetric(X889)
        | ~ epred1_2(X889,X888) )
      & ( ~ well_founded_relation(X888)
        | well_founded_relation(X889)
        | ~ epred1_2(X889,X888) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_6])])]) ).

cnf(c_0_11,lemma,
    ( epred1_2(X2,X1)
    | ~ relation(X1)
    | ~ relation(X2)
    | ~ relation(X3)
    | ~ function(X3)
    | ~ relation_isomorphism(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_7]) ).

cnf(c_0_12,negated_conjecture,
    relation_isomorphism(esk119_0,esk120_0,esk121_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_13,negated_conjecture,
    relation(esk121_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_14,negated_conjecture,
    relation(esk120_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_15,negated_conjecture,
    relation(esk119_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_16,negated_conjecture,
    function(esk121_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_17,plain,
    ( connected(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_18,negated_conjecture,
    well_ordering(esk119_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_19,plain,
    ( reflexive(X2)
    | ~ reflexive(X1)
    | ~ epred1_2(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_10]) ).

cnf(c_0_20,negated_conjecture,
    epred1_2(esk120_0,esk119_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_11,c_0_12]),c_0_13]),c_0_14]),c_0_15]),c_0_16])]) ).

cnf(c_0_21,plain,
    ( connected(X2)
    | ~ connected(X1)
    | ~ epred1_2(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_10]) ).

cnf(c_0_22,negated_conjecture,
    connected(esk119_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_17,c_0_18]),c_0_15])]) ).

cnf(c_0_23,plain,
    ( well_ordering(X1)
    | ~ reflexive(X1)
    | ~ transitive(X1)
    | ~ antisymmetric(X1)
    | ~ connected(X1)
    | ~ well_founded_relation(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_24,plain,
    ( reflexive(esk120_0)
    | ~ reflexive(esk119_0) ),
    inference(spm,[status(thm)],[c_0_19,c_0_20]) ).

cnf(c_0_25,plain,
    connected(esk120_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_21,c_0_20]),c_0_22])]) ).

cnf(c_0_26,negated_conjecture,
    ~ well_ordering(esk120_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_27,plain,
    ( ~ reflexive(esk119_0)
    | ~ well_founded_relation(esk120_0)
    | ~ transitive(esk120_0)
    | ~ antisymmetric(esk120_0) ),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_24]),c_0_25]),c_0_14])]),c_0_26]) ).

cnf(c_0_28,plain,
    ( reflexive(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_29,plain,
    ( transitive(X2)
    | ~ transitive(X1)
    | ~ epred1_2(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_10]) ).

cnf(c_0_30,plain,
    ( ~ well_founded_relation(esk120_0)
    | ~ transitive(esk120_0)
    | ~ antisymmetric(esk120_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_27,c_0_28]),c_0_18]),c_0_15])]) ).

cnf(c_0_31,plain,
    ( transitive(esk120_0)
    | ~ transitive(esk119_0) ),
    inference(spm,[status(thm)],[c_0_29,c_0_20]) ).

cnf(c_0_32,plain,
    ( ~ well_founded_relation(esk120_0)
    | ~ transitive(esk119_0)
    | ~ antisymmetric(esk120_0) ),
    inference(spm,[status(thm)],[c_0_30,c_0_31]) ).

cnf(c_0_33,plain,
    ( transitive(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_34,plain,
    ( antisymmetric(X2)
    | ~ antisymmetric(X1)
    | ~ epred1_2(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_10]) ).

cnf(c_0_35,plain,
    ( ~ well_founded_relation(esk120_0)
    | ~ antisymmetric(esk120_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_33]),c_0_18]),c_0_15])]) ).

cnf(c_0_36,plain,
    ( antisymmetric(esk120_0)
    | ~ antisymmetric(esk119_0) ),
    inference(spm,[status(thm)],[c_0_34,c_0_20]) ).

cnf(c_0_37,plain,
    ( ~ well_founded_relation(esk120_0)
    | ~ antisymmetric(esk119_0) ),
    inference(spm,[status(thm)],[c_0_35,c_0_36]) ).

cnf(c_0_38,plain,
    ( antisymmetric(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_39,plain,
    ( well_founded_relation(X2)
    | ~ well_founded_relation(X1)
    | ~ epred1_2(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_10]) ).

cnf(c_0_40,plain,
    ~ well_founded_relation(esk120_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_37,c_0_38]),c_0_18]),c_0_15])]) ).

cnf(c_0_41,plain,
    ( well_founded_relation(esk120_0)
    | ~ well_founded_relation(esk119_0) ),
    inference(spm,[status(thm)],[c_0_39,c_0_20]) ).

cnf(c_0_42,plain,
    ~ well_founded_relation(esk119_0),
    inference(spm,[status(thm)],[c_0_40,c_0_41]) ).

cnf(c_0_43,plain,
    ( well_founded_relation(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_44,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_42,c_0_43]),c_0_18]),c_0_15])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : SEU261+2 : TPTP v8.1.2. Released v3.3.0.
% 0.00/0.13  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.13/0.34  % Computer : n003.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit   : 300
% 0.13/0.35  % WCLimit    : 300
% 0.13/0.35  % DateTime   : Wed Aug 23 16:58:22 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.20/0.57  start to proof: theBenchmark
% 0.76/0.84  % Version  : CSE_E---1.5
% 0.76/0.84  % Problem  : theBenchmark.p
% 0.76/0.84  % Proof found
% 0.76/0.84  % SZS status Theorem for theBenchmark.p
% 0.76/0.84  % SZS output start Proof
% See solution above
% 0.76/0.86  % Total time : 0.254000 s
% 0.76/0.86  % SZS output end Proof
% 0.76/0.86  % Total time : 0.264000 s
%------------------------------------------------------------------------------