TSTP Solution File: SEU251+1 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SEU251+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 08:48:09 EDT 2022

% Result   : Theorem 7.03s 2.31s
% Output   : Proof 9.72s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.11  % Problem  : SEU251+1 : TPTP v8.1.0. Released v3.3.0.
% 0.10/0.12  % Command  : ePrincess-casc -timeout=%d %s
% 0.12/0.33  % Computer : n026.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Mon Jun 20 05:11:26 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.18/0.58          ____       _                          
% 0.18/0.58    ___  / __ \_____(_)___  ________  __________
% 0.18/0.58   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.18/0.58  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.18/0.58  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.18/0.58  
% 0.18/0.58  A Theorem Prover for First-Order Logic
% 0.18/0.58  (ePrincess v.1.0)
% 0.18/0.58  
% 0.18/0.58  (c) Philipp Rümmer, 2009-2015
% 0.18/0.58  (c) Peter Backeman, 2014-2015
% 0.18/0.58  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.18/0.58  Free software under GNU Lesser General Public License (LGPL).
% 0.18/0.58  Bug reports to peter@backeman.se
% 0.18/0.58  
% 0.18/0.58  For more information, visit http://user.uu.se/~petba168/breu/
% 0.18/0.58  
% 0.18/0.58  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.74/0.63  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.62/0.95  Prover 0: Preprocessing ...
% 2.29/1.22  Prover 0: Warning: ignoring some quantifiers
% 2.36/1.25  Prover 0: Constructing countermodel ...
% 3.53/1.61  Prover 0: gave up
% 3.53/1.61  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -resolutionMethod=normal +ignoreQuantifiers -generateTriggers=all
% 3.97/1.64  Prover 1: Preprocessing ...
% 4.28/1.74  Prover 1: Warning: ignoring some quantifiers
% 4.28/1.75  Prover 1: Constructing countermodel ...
% 6.03/2.08  Prover 1: gave up
% 6.03/2.08  Prover 2: Options:  +triggersInConjecture +genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 6.03/2.11  Prover 2: Preprocessing ...
% 6.28/2.20  Prover 2: Warning: ignoring some quantifiers
% 6.28/2.20  Prover 2: Constructing countermodel ...
% 7.03/2.31  Prover 2: proved (226ms)
% 7.03/2.31  
% 7.03/2.31  No countermodel exists, formula is valid
% 7.03/2.31  % SZS status Theorem for theBenchmark
% 7.03/2.31  
% 7.03/2.31  Generating proof ... Warning: ignoring some quantifiers
% 9.30/2.85  found it (size 57)
% 9.30/2.85  
% 9.30/2.85  % SZS output start Proof for theBenchmark
% 9.30/2.85  Assumed formulas after preprocessing and simplification: 
% 9.30/2.85  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] :  ? [v8] :  ? [v9] :  ? [v10] :  ? [v11] :  ? [v12] : ( ~ (v9 = 0) &  ~ (v6 = 0) & relation_restriction(v2, v0) = v3 & subset(v4, v5) = v6 & fiber(v3, v1) = v4 & fiber(v2, v1) = v5 & one_to_one(v7) = 0 & relation(v12) = 0 & relation(v10) = 0 & relation(v7) = 0 & relation(v2) = 0 & function(v12) = 0 & function(v10) = 0 & function(v7) = 0 & empty(v11) = 0 & empty(v10) = 0 & empty(v8) = v9 & empty(empty_set) = 0 &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] :  ! [v17] : (v17 = 0 | v16 = v14 |  ~ (fiber(v13, v14) = v15) |  ~ (relation(v13) = 0) |  ~ (in(v16, v15) = v17) |  ? [v18] :  ? [v19] : ( ~ (v19 = 0) & ordered_pair(v16, v14) = v18 & in(v18, v13) = v19)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] :  ! [v17] : (v17 = 0 |  ~ (powerset(v15) = v16) |  ~ (element(v14, v16) = 0) |  ~ (element(v13, v15) = v17) |  ? [v18] : ( ~ (v18 = 0) & in(v13, v14) = v18)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] :  ! [v17] : (v16 = v14 |  ~ (fiber(v13, v14) = v15) |  ~ (ordered_pair(v16, v14) = v17) |  ~ (relation(v13) = 0) |  ? [v18] : ((v18 = 0 & in(v16, v15) = 0) | ( ~ (v18 = 0) & in(v17, v13) = v18))) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (relation_restriction(v15, v14) = v16) |  ~ (in(v13, v16) = v17) |  ? [v18] :  ? [v19] :  ? [v20] : (( ~ (v18 = 0) & relation(v15) = v18) | (( ~ (v17 = 0) | (v20 = 0 & v18 = 0 & cartesian_product2(v14, v14) = v19 & in(v13, v19) = 0 & in(v13, v15) = 0)) & (v17 = 0 | ( ~ (v20 = 0) & cartesian_product2(v14, v14) = v19 & in(v13, v19) = v20) | ( ~ (v18 = 0) & in(v13, v15) = v18))))) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (fiber(v13, v14) = v15) |  ~ (ordered_pair(v16, v14) = v17) |  ~ (relation(v13) = 0) |  ? [v18] : ((v18 = 0 &  ~ (v16 = v14) & in(v17, v13) = 0) | ( ~ (v18 = 0) & in(v16, v15) = v18))) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v16 = 0 |  ~ (powerset(v14) = v15) |  ~ (element(v13, v15) = v16) |  ? [v17] : ( ~ (v17 = 0) & subset(v13, v14) = v17)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v16 = 0 |  ~ (element(v13, v15) = v16) |  ~ (in(v13, v14) = 0) |  ? [v17] :  ? [v18] : ( ~ (v18 = 0) & powerset(v15) = v17 & element(v14, v17) = v18)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v16 = 0 |  ~ (subset(v13, v14) = 0) |  ~ (in(v15, v14) = v16) |  ? [v17] : ( ~ (v17 = 0) & in(v15, v13) = v17)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v14 = v13 |  ~ (element(v16, v15) = v14) |  ~ (element(v16, v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v14 = v13 |  ~ (cartesian_product2(v16, v15) = v14) |  ~ (cartesian_product2(v16, v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v14 = v13 |  ~ (relation_restriction(v16, v15) = v14) |  ~ (relation_restriction(v16, v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v14 = v13 |  ~ (subset(v16, v15) = v14) |  ~ (subset(v16, v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v14 = v13 |  ~ (fiber(v16, v15) = v14) |  ~ (fiber(v16, v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v14 = v13 |  ~ (ordered_pair(v16, v15) = v14) |  ~ (ordered_pair(v16, v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v14 = v13 |  ~ (set_intersection2(v16, v15) = v14) |  ~ (set_intersection2(v16, v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v14 = v13 |  ~ (unordered_pair(v16, v15) = v14) |  ~ (unordered_pair(v16, v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v14 = v13 |  ~ (in(v16, v15) = v14) |  ~ (in(v16, v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : ( ~ (powerset(v15) = v16) |  ~ (element(v14, v16) = 0) |  ~ (in(v13, v14) = 0) | element(v13, v15) = 0) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : ( ~ (powerset(v15) = v16) |  ~ (element(v14, v16) = 0) |  ~ (in(v13, v14) = 0) |  ? [v17] : ( ~ (v17 = 0) & empty(v15) = v17)) &  ! [v13] :  ! [v14] :  ! [v15] :  ! [v16] : ( ~ (fiber(v13, v14) = v15) |  ~ (relation(v13) = 0) |  ~ (in(v16, v15) = 0) |  ? [v17] : (ordered_pair(v16, v14) = v17 & in(v17, v13) = 0)) &  ? [v13] :  ! [v14] :  ! [v15] :  ! [v16] : (v16 = v13 |  ~ (fiber(v14, v15) = v16) |  ~ (relation(v14) = 0) |  ? [v17] :  ? [v18] :  ? [v19] :  ? [v20] : ((v17 = v15 | ( ~ (v20 = 0) & ordered_pair(v17, v15) = v19 & in(v19, v14) = v20) | ( ~ (v18 = 0) & in(v17, v13) = v18)) & ((v20 = 0 &  ~ (v17 = v15) & ordered_pair(v17, v15) = v19 & in(v19, v14) = 0) | (v18 = 0 & in(v17, v13) = 0)))) &  ! [v13] :  ! [v14] :  ! [v15] : (v15 = 0 |  ~ (element(v13, v14) = v15) |  ? [v16] : ( ~ (v16 = 0) & in(v13, v14) = v16)) &  ! [v13] :  ! [v14] :  ! [v15] : (v15 = 0 |  ~ (subset(v13, v14) = v15) |  ? [v16] :  ? [v17] : ( ~ (v17 = 0) & powerset(v14) = v16 & element(v13, v16) = v17)) &  ! [v13] :  ! [v14] :  ! [v15] : (v15 = 0 |  ~ (subset(v13, v14) = v15) |  ? [v16] :  ? [v17] : ( ~ (v17 = 0) & in(v16, v14) = v17 & in(v16, v13) = 0)) &  ! [v13] :  ! [v14] :  ! [v15] : (v15 = 0 |  ~ (in(v13, v14) = v15) |  ? [v16] : ((v16 = 0 & empty(v14) = 0) | ( ~ (v16 = 0) & element(v13, v14) = v16))) &  ! [v13] :  ! [v14] :  ! [v15] : (v14 = v13 |  ~ (powerset(v15) = v14) |  ~ (powerset(v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] : (v14 = v13 |  ~ (singleton(v15) = v14) |  ~ (singleton(v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] : (v14 = v13 |  ~ (one_to_one(v15) = v14) |  ~ (one_to_one(v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] : (v14 = v13 |  ~ (relation(v15) = v14) |  ~ (relation(v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] : (v14 = v13 |  ~ (function(v15) = v14) |  ~ (function(v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] : (v14 = v13 |  ~ (empty(v15) = v14) |  ~ (empty(v15) = v13)) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (powerset(v14) = v15) |  ~ (element(v13, v15) = 0) | subset(v13, v14) = 0) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (cartesian_product2(v14, v14) = v15) |  ~ (relation(v13) = 0) |  ? [v16] : (relation_restriction(v13, v14) = v16 & set_intersection2(v13, v15) = v16)) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (relation_restriction(v13, v14) = v15) |  ~ (relation(v13) = 0) |  ? [v16] : (cartesian_product2(v14, v14) = v16 & set_intersection2(v13, v16) = v15)) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (relation_restriction(v13, v14) = v15) |  ? [v16] : ((v16 = 0 & relation(v15) = 0) | ( ~ (v16 = 0) & relation(v13) = v16))) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (subset(v13, v14) = 0) |  ~ (in(v15, v13) = 0) | in(v15, v14) = 0) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (fiber(v13, v14) = v15) |  ~ (relation(v13) = 0) |  ~ (in(v14, v15) = 0)) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (ordered_pair(v13, v14) = v15) |  ? [v16] :  ? [v17] : (singleton(v13) = v17 & unordered_pair(v16, v17) = v15 & unordered_pair(v13, v14) = v16)) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (ordered_pair(v13, v14) = v15) |  ? [v16] : ( ~ (v16 = 0) & empty(v15) = v16)) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (set_intersection2(v14, v13) = v15) | set_intersection2(v13, v14) = v15) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (set_intersection2(v13, v14) = v15) | set_intersection2(v14, v13) = v15) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (unordered_pair(v14, v13) = v15) | unordered_pair(v13, v14) = v15) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (unordered_pair(v13, v14) = v15) | unordered_pair(v14, v13) = v15) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (unordered_pair(v13, v14) = v15) |  ? [v16] :  ? [v17] : (singleton(v13) = v17 & ordered_pair(v13, v14) = v16 & unordered_pair(v15, v17) = v16)) &  ! [v13] :  ! [v14] :  ! [v15] : ( ~ (empty(v15) = 0) |  ~ (in(v13, v14) = 0) |  ? [v16] :  ? [v17] : ( ~ (v17 = 0) & powerset(v15) = v16 & element(v14, v16) = v17)) &  ! [v13] :  ! [v14] : (v14 = v13 |  ~ (set_intersection2(v13, v13) = v14)) &  ! [v13] :  ! [v14] : (v14 = v13 |  ~ (empty(v14) = 0) |  ~ (empty(v13) = 0)) &  ! [v13] :  ! [v14] : (v14 = empty_set |  ~ (set_intersection2(v13, empty_set) = v14)) &  ! [v13] :  ! [v14] : (v14 = 0 |  ~ (subset(v13, v13) = v14)) &  ! [v13] :  ! [v14] : (v14 = 0 |  ~ (function(v13) = v14) |  ? [v15] : ( ~ (v15 = 0) & empty(v13) = v15)) &  ! [v13] :  ! [v14] : ( ~ (element(v13, v14) = 0) |  ? [v15] : ((v15 = 0 & empty(v14) = 0) | (v15 = 0 & in(v13, v14) = 0))) &  ! [v13] :  ! [v14] : ( ~ (subset(v13, v14) = 0) |  ? [v15] : (powerset(v14) = v15 & element(v13, v15) = 0)) &  ! [v13] :  ! [v14] : ( ~ (one_to_one(v13) = v14) |  ? [v15] :  ? [v16] : ((v16 = 0 & v15 = 0 & v14 = 0 & relation(v13) = 0 & function(v13) = 0) | ( ~ (v15 = 0) & relation(v13) = v15) | ( ~ (v15 = 0) & function(v13) = v15) | ( ~ (v15 = 0) & empty(v13) = v15))) &  ! [v13] :  ! [v14] : ( ~ (in(v14, v13) = 0) |  ? [v15] : ( ~ (v15 = 0) & in(v13, v14) = v15)) &  ! [v13] :  ! [v14] : ( ~ (in(v13, v14) = 0) | element(v13, v14) = 0) &  ! [v13] :  ! [v14] : ( ~ (in(v13, v14) = 0) |  ? [v15] : ( ~ (v15 = 0) & empty(v14) = v15)) &  ! [v13] :  ! [v14] : ( ~ (in(v13, v14) = 0) |  ? [v15] : ( ~ (v15 = 0) & in(v14, v13) = v15)) &  ! [v13] : (v13 = empty_set |  ~ (empty(v13) = 0)) &  ! [v13] : ( ~ (relation(v13) = 0) |  ? [v14] :  ? [v15] : ((v15 = 0 & v14 = 0 & one_to_one(v13) = 0 & function(v13) = 0) | ( ~ (v14 = 0) & function(v13) = v14) | ( ~ (v14 = 0) & empty(v13) = v14))) &  ! [v13] : ( ~ (function(v13) = 0) |  ? [v14] :  ? [v15] : ((v15 = 0 & v14 = 0 & one_to_one(v13) = 0 & relation(v13) = 0) | ( ~ (v14 = 0) & relation(v13) = v14) | ( ~ (v14 = 0) & empty(v13) = v14))) &  ! [v13] : ( ~ (empty(v13) = 0) | function(v13) = 0) &  ! [v13] : ( ~ (empty(v13) = 0) |  ? [v14] :  ? [v15] :  ? [v16] : ((v16 = 0 & v15 = 0 & v14 = 0 & one_to_one(v13) = 0 & relation(v13) = 0 & function(v13) = 0) | ( ~ (v14 = 0) & relation(v13) = v14) | ( ~ (v14 = 0) & function(v13) = v14))) &  ? [v13] :  ? [v14] :  ? [v15] : element(v14, v13) = v15 &  ? [v13] :  ? [v14] :  ? [v15] : cartesian_product2(v14, v13) = v15 &  ? [v13] :  ? [v14] :  ? [v15] : relation_restriction(v14, v13) = v15 &  ? [v13] :  ? [v14] :  ? [v15] : subset(v14, v13) = v15 &  ? [v13] :  ? [v14] :  ? [v15] : fiber(v14, v13) = v15 &  ? [v13] :  ? [v14] :  ? [v15] : ordered_pair(v14, v13) = v15 &  ? [v13] :  ? [v14] :  ? [v15] : set_intersection2(v14, v13) = v15 &  ? [v13] :  ? [v14] :  ? [v15] : unordered_pair(v14, v13) = v15 &  ? [v13] :  ? [v14] :  ? [v15] : in(v14, v13) = v15 &  ? [v13] :  ? [v14] : powerset(v13) = v14 &  ? [v13] :  ? [v14] : element(v14, v13) = 0 &  ? [v13] :  ? [v14] : singleton(v13) = v14 &  ? [v13] :  ? [v14] : one_to_one(v13) = v14 &  ? [v13] :  ? [v14] : relation(v13) = v14 &  ? [v13] :  ? [v14] : function(v13) = v14 &  ? [v13] :  ? [v14] : empty(v13) = v14)
% 9.30/2.89  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9, all_0_10_10, all_0_11_11, all_0_12_12 yields:
% 9.30/2.89  | (1)  ~ (all_0_3_3 = 0) &  ~ (all_0_6_6 = 0) & relation_restriction(all_0_10_10, all_0_12_12) = all_0_9_9 & subset(all_0_8_8, all_0_7_7) = all_0_6_6 & fiber(all_0_9_9, all_0_11_11) = all_0_8_8 & fiber(all_0_10_10, all_0_11_11) = all_0_7_7 & one_to_one(all_0_5_5) = 0 & relation(all_0_0_0) = 0 & relation(all_0_2_2) = 0 & relation(all_0_5_5) = 0 & relation(all_0_10_10) = 0 & function(all_0_0_0) = 0 & function(all_0_2_2) = 0 & function(all_0_5_5) = 0 & empty(all_0_1_1) = 0 & empty(all_0_2_2) = 0 & empty(all_0_4_4) = all_0_3_3 & empty(empty_set) = 0 &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 | v3 = v1 |  ~ (fiber(v0, v1) = v2) |  ~ (relation(v0) = 0) |  ~ (in(v3, v2) = v4) |  ? [v5] :  ? [v6] : ( ~ (v6 = 0) & ordered_pair(v3, v1) = v5 & in(v5, v0) = v6)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (powerset(v2) = v3) |  ~ (element(v1, v3) = 0) |  ~ (element(v0, v2) = v4) |  ? [v5] : ( ~ (v5 = 0) & in(v0, v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v3 = v1 |  ~ (fiber(v0, v1) = v2) |  ~ (ordered_pair(v3, v1) = v4) |  ~ (relation(v0) = 0) |  ? [v5] : ((v5 = 0 & in(v3, v2) = 0) | ( ~ (v5 = 0) & in(v4, v0) = v5))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : ( ~ (relation_restriction(v2, v1) = v3) |  ~ (in(v0, v3) = v4) |  ? [v5] :  ? [v6] :  ? [v7] : (( ~ (v5 = 0) & relation(v2) = v5) | (( ~ (v4 = 0) | (v7 = 0 & v5 = 0 & cartesian_product2(v1, v1) = v6 & in(v0, v6) = 0 & in(v0, v2) = 0)) & (v4 = 0 | ( ~ (v7 = 0) & cartesian_product2(v1, v1) = v6 & in(v0, v6) = v7) | ( ~ (v5 = 0) & in(v0, v2) = v5))))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : ( ~ (fiber(v0, v1) = v2) |  ~ (ordered_pair(v3, v1) = v4) |  ~ (relation(v0) = 0) |  ? [v5] : ((v5 = 0 &  ~ (v3 = v1) & in(v4, v0) = 0) | ( ~ (v5 = 0) & in(v3, v2) = v5))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (powerset(v1) = v2) |  ~ (element(v0, v2) = v3) |  ? [v4] : ( ~ (v4 = 0) & subset(v0, v1) = v4)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (element(v0, v2) = v3) |  ~ (in(v0, v1) = 0) |  ? [v4] :  ? [v5] : ( ~ (v5 = 0) & powerset(v2) = v4 & element(v1, v4) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (subset(v0, v1) = 0) |  ~ (in(v2, v1) = v3) |  ? [v4] : ( ~ (v4 = 0) & in(v2, v0) = v4)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (element(v3, v2) = v1) |  ~ (element(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (cartesian_product2(v3, v2) = v1) |  ~ (cartesian_product2(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (relation_restriction(v3, v2) = v1) |  ~ (relation_restriction(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (fiber(v3, v2) = v1) |  ~ (fiber(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (ordered_pair(v3, v2) = v1) |  ~ (ordered_pair(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (set_intersection2(v3, v2) = v1) |  ~ (set_intersection2(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (in(v3, v2) = v1) |  ~ (in(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ (element(v1, v3) = 0) |  ~ (in(v0, v1) = 0) | element(v0, v2) = 0) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ (element(v1, v3) = 0) |  ~ (in(v0, v1) = 0) |  ? [v4] : ( ~ (v4 = 0) & empty(v2) = v4)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (fiber(v0, v1) = v2) |  ~ (relation(v0) = 0) |  ~ (in(v3, v2) = 0) |  ? [v4] : (ordered_pair(v3, v1) = v4 & in(v4, v0) = 0)) &  ? [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = v0 |  ~ (fiber(v1, v2) = v3) |  ~ (relation(v1) = 0) |  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] : ((v4 = v2 | ( ~ (v7 = 0) & ordered_pair(v4, v2) = v6 & in(v6, v1) = v7) | ( ~ (v5 = 0) & in(v4, v0) = v5)) & ((v7 = 0 &  ~ (v4 = v2) & ordered_pair(v4, v2) = v6 & in(v6, v1) = 0) | (v5 = 0 & in(v4, v0) = 0)))) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (element(v0, v1) = v2) |  ? [v3] : ( ~ (v3 = 0) & in(v0, v1) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (subset(v0, v1) = v2) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & powerset(v1) = v3 & element(v0, v3) = v4)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (subset(v0, v1) = v2) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & in(v3, v1) = v4 & in(v3, v0) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (in(v0, v1) = v2) |  ? [v3] : ((v3 = 0 & empty(v1) = 0) | ( ~ (v3 = 0) & element(v0, v1) = v3))) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (powerset(v2) = v1) |  ~ (powerset(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (one_to_one(v2) = v1) |  ~ (one_to_one(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (relation(v2) = v1) |  ~ (relation(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (function(v2) = v1) |  ~ (function(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (empty(v2) = v1) |  ~ (empty(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ (element(v0, v2) = 0) | subset(v0, v1) = 0) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (cartesian_product2(v1, v1) = v2) |  ~ (relation(v0) = 0) |  ? [v3] : (relation_restriction(v0, v1) = v3 & set_intersection2(v0, v2) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (relation_restriction(v0, v1) = v2) |  ~ (relation(v0) = 0) |  ? [v3] : (cartesian_product2(v1, v1) = v3 & set_intersection2(v0, v3) = v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (relation_restriction(v0, v1) = v2) |  ? [v3] : ((v3 = 0 & relation(v2) = 0) | ( ~ (v3 = 0) & relation(v0) = v3))) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (subset(v0, v1) = 0) |  ~ (in(v2, v0) = 0) | in(v2, v1) = 0) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (fiber(v0, v1) = v2) |  ~ (relation(v0) = 0) |  ~ (in(v1, v2) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (ordered_pair(v0, v1) = v2) |  ? [v3] :  ? [v4] : (singleton(v0) = v4 & unordered_pair(v3, v4) = v2 & unordered_pair(v0, v1) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (ordered_pair(v0, v1) = v2) |  ? [v3] : ( ~ (v3 = 0) & empty(v2) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_intersection2(v1, v0) = v2) | set_intersection2(v0, v1) = v2) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_intersection2(v0, v1) = v2) | set_intersection2(v1, v0) = v2) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v1, v0) = v2) | unordered_pair(v0, v1) = v2) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | unordered_pair(v1, v0) = v2) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) |  ? [v3] :  ? [v4] : (singleton(v0) = v4 & ordered_pair(v0, v1) = v3 & unordered_pair(v2, v4) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (empty(v2) = 0) |  ~ (in(v0, v1) = 0) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & powerset(v2) = v3 & element(v1, v3) = v4)) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (set_intersection2(v0, v0) = v1)) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (empty(v1) = 0) |  ~ (empty(v0) = 0)) &  ! [v0] :  ! [v1] : (v1 = empty_set |  ~ (set_intersection2(v0, empty_set) = v1)) &  ! [v0] :  ! [v1] : (v1 = 0 |  ~ (subset(v0, v0) = v1)) &  ! [v0] :  ! [v1] : (v1 = 0 |  ~ (function(v0) = v1) |  ? [v2] : ( ~ (v2 = 0) & empty(v0) = v2)) &  ! [v0] :  ! [v1] : ( ~ (element(v0, v1) = 0) |  ? [v2] : ((v2 = 0 & empty(v1) = 0) | (v2 = 0 & in(v0, v1) = 0))) &  ! [v0] :  ! [v1] : ( ~ (subset(v0, v1) = 0) |  ? [v2] : (powerset(v1) = v2 & element(v0, v2) = 0)) &  ! [v0] :  ! [v1] : ( ~ (one_to_one(v0) = v1) |  ? [v2] :  ? [v3] : ((v3 = 0 & v2 = 0 & v1 = 0 & relation(v0) = 0 & function(v0) = 0) | ( ~ (v2 = 0) & relation(v0) = v2) | ( ~ (v2 = 0) & function(v0) = v2) | ( ~ (v2 = 0) & empty(v0) = v2))) &  ! [v0] :  ! [v1] : ( ~ (in(v1, v0) = 0) |  ? [v2] : ( ~ (v2 = 0) & in(v0, v1) = v2)) &  ! [v0] :  ! [v1] : ( ~ (in(v0, v1) = 0) | element(v0, v1) = 0) &  ! [v0] :  ! [v1] : ( ~ (in(v0, v1) = 0) |  ? [v2] : ( ~ (v2 = 0) & empty(v1) = v2)) &  ! [v0] :  ! [v1] : ( ~ (in(v0, v1) = 0) |  ? [v2] : ( ~ (v2 = 0) & in(v1, v0) = v2)) &  ! [v0] : (v0 = empty_set |  ~ (empty(v0) = 0)) &  ! [v0] : ( ~ (relation(v0) = 0) |  ? [v1] :  ? [v2] : ((v2 = 0 & v1 = 0 & one_to_one(v0) = 0 & function(v0) = 0) | ( ~ (v1 = 0) & function(v0) = v1) | ( ~ (v1 = 0) & empty(v0) = v1))) &  ! [v0] : ( ~ (function(v0) = 0) |  ? [v1] :  ? [v2] : ((v2 = 0 & v1 = 0 & one_to_one(v0) = 0 & relation(v0) = 0) | ( ~ (v1 = 0) & relation(v0) = v1) | ( ~ (v1 = 0) & empty(v0) = v1))) &  ! [v0] : ( ~ (empty(v0) = 0) | function(v0) = 0) &  ! [v0] : ( ~ (empty(v0) = 0) |  ? [v1] :  ? [v2] :  ? [v3] : ((v3 = 0 & v2 = 0 & v1 = 0 & one_to_one(v0) = 0 & relation(v0) = 0 & function(v0) = 0) | ( ~ (v1 = 0) & relation(v0) = v1) | ( ~ (v1 = 0) & function(v0) = v1))) &  ? [v0] :  ? [v1] :  ? [v2] : element(v1, v0) = v2 &  ? [v0] :  ? [v1] :  ? [v2] : cartesian_product2(v1, v0) = v2 &  ? [v0] :  ? [v1] :  ? [v2] : relation_restriction(v1, v0) = v2 &  ? [v0] :  ? [v1] :  ? [v2] : subset(v1, v0) = v2 &  ? [v0] :  ? [v1] :  ? [v2] : fiber(v1, v0) = v2 &  ? [v0] :  ? [v1] :  ? [v2] : ordered_pair(v1, v0) = v2 &  ? [v0] :  ? [v1] :  ? [v2] : set_intersection2(v1, v0) = v2 &  ? [v0] :  ? [v1] :  ? [v2] : unordered_pair(v1, v0) = v2 &  ? [v0] :  ? [v1] :  ? [v2] : in(v1, v0) = v2 &  ? [v0] :  ? [v1] : powerset(v0) = v1 &  ? [v0] :  ? [v1] : element(v1, v0) = 0 &  ? [v0] :  ? [v1] : singleton(v0) = v1 &  ? [v0] :  ? [v1] : one_to_one(v0) = v1 &  ? [v0] :  ? [v1] : relation(v0) = v1 &  ? [v0] :  ? [v1] : function(v0) = v1 &  ? [v0] :  ? [v1] : empty(v0) = v1
% 9.72/2.91  |
% 9.72/2.91  | Applying alpha-rule on (1) yields:
% 9.72/2.91  | (2)  ? [v0] :  ? [v1] :  ? [v2] : element(v1, v0) = v2
% 9.72/2.91  | (3)  ? [v0] :  ? [v1] : powerset(v0) = v1
% 9.72/2.91  | (4)  ! [v0] :  ! [v1] : ( ~ (in(v1, v0) = 0) |  ? [v2] : ( ~ (v2 = 0) & in(v0, v1) = v2))
% 9.72/2.91  | (5)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (empty(v2) = v1) |  ~ (empty(v2) = v0))
% 9.72/2.91  | (6)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : ( ~ (relation_restriction(v2, v1) = v3) |  ~ (in(v0, v3) = v4) |  ? [v5] :  ? [v6] :  ? [v7] : (( ~ (v5 = 0) & relation(v2) = v5) | (( ~ (v4 = 0) | (v7 = 0 & v5 = 0 & cartesian_product2(v1, v1) = v6 & in(v0, v6) = 0 & in(v0, v2) = 0)) & (v4 = 0 | ( ~ (v7 = 0) & cartesian_product2(v1, v1) = v6 & in(v0, v6) = v7) | ( ~ (v5 = 0) & in(v0, v2) = v5)))))
% 9.72/2.91  | (7)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (ordered_pair(v0, v1) = v2) |  ? [v3] :  ? [v4] : (singleton(v0) = v4 & unordered_pair(v3, v4) = v2 & unordered_pair(v0, v1) = v3))
% 9.72/2.91  | (8) empty(all_0_4_4) = all_0_3_3
% 9.72/2.92  | (9)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | unordered_pair(v1, v0) = v2)
% 9.72/2.92  | (10)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v1, v0) = v2) | unordered_pair(v0, v1) = v2)
% 9.72/2.92  | (11)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (subset(v0, v1) = v2) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & powerset(v1) = v3 & element(v0, v3) = v4))
% 9.72/2.92  | (12)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (fiber(v0, v1) = v2) |  ~ (relation(v0) = 0) |  ~ (in(v3, v2) = 0) |  ? [v4] : (ordered_pair(v3, v1) = v4 & in(v4, v0) = 0))
% 9.72/2.92  | (13)  ? [v0] :  ? [v1] :  ? [v2] : subset(v1, v0) = v2
% 9.72/2.92  | (14)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (ordered_pair(v0, v1) = v2) |  ? [v3] : ( ~ (v3 = 0) & empty(v2) = v3))
% 9.72/2.92  | (15)  ? [v0] :  ? [v1] : function(v0) = v1
% 9.72/2.92  | (16)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v3 = v1 |  ~ (fiber(v0, v1) = v2) |  ~ (ordered_pair(v3, v1) = v4) |  ~ (relation(v0) = 0) |  ? [v5] : ((v5 = 0 & in(v3, v2) = 0) | ( ~ (v5 = 0) & in(v4, v0) = v5)))
% 9.72/2.92  | (17)  ! [v0] : ( ~ (empty(v0) = 0) | function(v0) = 0)
% 9.72/2.92  | (18)  ? [v0] :  ? [v1] :  ? [v2] : unordered_pair(v1, v0) = v2
% 9.72/2.92  | (19) empty(all_0_2_2) = 0
% 9.72/2.92  | (20)  ! [v0] :  ! [v1] : (v1 = 0 |  ~ (subset(v0, v0) = v1))
% 9.72/2.92  | (21)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (in(v3, v2) = v1) |  ~ (in(v3, v2) = v0))
% 9.72/2.92  | (22) relation_restriction(all_0_10_10, all_0_12_12) = all_0_9_9
% 9.72/2.92  | (23) empty(empty_set) = 0
% 9.72/2.92  | (24) relation(all_0_2_2) = 0
% 9.72/2.92  | (25) relation(all_0_5_5) = 0
% 9.72/2.92  | (26) relation(all_0_10_10) = 0
% 9.72/2.92  | (27)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (relation_restriction(v3, v2) = v1) |  ~ (relation_restriction(v3, v2) = v0))
% 9.72/2.92  | (28)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (element(v3, v2) = v1) |  ~ (element(v3, v2) = v0))
% 9.72/2.92  | (29)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (relation(v2) = v1) |  ~ (relation(v2) = v0))
% 9.72/2.92  | (30)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (empty(v2) = 0) |  ~ (in(v0, v1) = 0) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & powerset(v2) = v3 & element(v1, v3) = v4))
% 9.72/2.92  | (31)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (powerset(v2) = v3) |  ~ (element(v1, v3) = 0) |  ~ (element(v0, v2) = v4) |  ? [v5] : ( ~ (v5 = 0) & in(v0, v1) = v5))
% 9.72/2.92  | (32)  ? [v0] :  ? [v1] : one_to_one(v0) = v1
% 9.72/2.92  | (33)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (function(v2) = v1) |  ~ (function(v2) = v0))
% 9.72/2.92  | (34)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ (element(v0, v2) = 0) | subset(v0, v1) = 0)
% 9.72/2.92  | (35)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (subset(v0, v1) = 0) |  ~ (in(v2, v1) = v3) |  ? [v4] : ( ~ (v4 = 0) & in(v2, v0) = v4))
% 9.72/2.92  | (36)  ? [v0] :  ? [v1] : empty(v0) = v1
% 9.72/2.92  | (37)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0))
% 9.72/2.92  | (38)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 9.72/2.92  | (39)  ? [v0] :  ? [v1] :  ? [v2] : set_intersection2(v1, v0) = v2
% 9.72/2.92  | (40)  ! [v0] : ( ~ (relation(v0) = 0) |  ? [v1] :  ? [v2] : ((v2 = 0 & v1 = 0 & one_to_one(v0) = 0 & function(v0) = 0) | ( ~ (v1 = 0) & function(v0) = v1) | ( ~ (v1 = 0) & empty(v0) = v1)))
% 9.72/2.92  | (41)  ! [v0] :  ! [v1] : (v1 = empty_set |  ~ (set_intersection2(v0, empty_set) = v1))
% 9.72/2.92  | (42)  ? [v0] :  ? [v1] : element(v1, v0) = 0
% 9.72/2.92  | (43)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (cartesian_product2(v1, v1) = v2) |  ~ (relation(v0) = 0) |  ? [v3] : (relation_restriction(v0, v1) = v3 & set_intersection2(v0, v2) = v3))
% 9.72/2.92  | (44) relation(all_0_0_0) = 0
% 9.72/2.92  | (45)  ! [v0] :  ! [v1] : ( ~ (one_to_one(v0) = v1) |  ? [v2] :  ? [v3] : ((v3 = 0 & v2 = 0 & v1 = 0 & relation(v0) = 0 & function(v0) = 0) | ( ~ (v2 = 0) & relation(v0) = v2) | ( ~ (v2 = 0) & function(v0) = v2) | ( ~ (v2 = 0) & empty(v0) = v2)))
% 9.72/2.92  | (46) function(all_0_2_2) = 0
% 9.72/2.93  | (47)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (powerset(v2) = v1) |  ~ (powerset(v2) = v0))
% 9.72/2.93  | (48) empty(all_0_1_1) = 0
% 9.72/2.93  | (49)  ! [v0] :  ! [v1] : ( ~ (subset(v0, v1) = 0) |  ? [v2] : (powerset(v1) = v2 & element(v0, v2) = 0))
% 9.72/2.93  | (50) function(all_0_0_0) = 0
% 9.72/2.93  | (51) function(all_0_5_5) = 0
% 9.72/2.93  | (52)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (empty(v1) = 0) |  ~ (empty(v0) = 0))
% 9.72/2.93  | (53)  ? [v0] :  ? [v1] :  ? [v2] : cartesian_product2(v1, v0) = v2
% 9.72/2.93  | (54)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (fiber(v0, v1) = v2) |  ~ (relation(v0) = 0) |  ~ (in(v1, v2) = 0))
% 9.72/2.93  | (55)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ (element(v1, v3) = 0) |  ~ (in(v0, v1) = 0) | element(v0, v2) = 0)
% 9.72/2.93  | (56)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 | v3 = v1 |  ~ (fiber(v0, v1) = v2) |  ~ (relation(v0) = 0) |  ~ (in(v3, v2) = v4) |  ? [v5] :  ? [v6] : ( ~ (v6 = 0) & ordered_pair(v3, v1) = v5 & in(v5, v0) = v6))
% 9.72/2.93  | (57)  ? [v0] :  ? [v1] :  ? [v2] : in(v1, v0) = v2
% 9.72/2.93  | (58)  ! [v0] : (v0 = empty_set |  ~ (empty(v0) = 0))
% 9.72/2.93  | (59)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0))
% 9.72/2.93  | (60)  ! [v0] :  ! [v1] : ( ~ (element(v0, v1) = 0) |  ? [v2] : ((v2 = 0 & empty(v1) = 0) | (v2 = 0 & in(v0, v1) = 0)))
% 9.72/2.93  | (61)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ (element(v1, v3) = 0) |  ~ (in(v0, v1) = 0) |  ? [v4] : ( ~ (v4 = 0) & empty(v2) = v4))
% 9.72/2.93  | (62)  ? [v0] :  ? [v1] :  ? [v2] : relation_restriction(v1, v0) = v2
% 9.72/2.93  | (63)  ! [v0] :  ! [v1] : ( ~ (in(v0, v1) = 0) |  ? [v2] : ( ~ (v2 = 0) & empty(v1) = v2))
% 9.72/2.93  | (64)  ? [v0] :  ? [v1] :  ? [v2] : ordered_pair(v1, v0) = v2
% 9.72/2.93  | (65) fiber(all_0_10_10, all_0_11_11) = all_0_7_7
% 9.72/2.93  | (66)  ! [v0] :  ! [v1] : ( ~ (in(v0, v1) = 0) | element(v0, v1) = 0)
% 9.72/2.93  | (67)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : ( ~ (fiber(v0, v1) = v2) |  ~ (ordered_pair(v3, v1) = v4) |  ~ (relation(v0) = 0) |  ? [v5] : ((v5 = 0 &  ~ (v3 = v1) & in(v4, v0) = 0) | ( ~ (v5 = 0) & in(v3, v2) = v5)))
% 9.72/2.93  | (68)  ? [v0] :  ? [v1] : relation(v0) = v1
% 9.72/2.93  | (69)  ~ (all_0_6_6 = 0)
% 9.72/2.93  | (70)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (ordered_pair(v3, v2) = v1) |  ~ (ordered_pair(v3, v2) = v0))
% 9.72/2.93  | (71) fiber(all_0_9_9, all_0_11_11) = all_0_8_8
% 9.72/2.93  | (72)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (subset(v0, v1) = v2) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & in(v3, v1) = v4 & in(v3, v0) = 0))
% 9.72/2.93  | (73)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) |  ? [v3] :  ? [v4] : (singleton(v0) = v4 & ordered_pair(v0, v1) = v3 & unordered_pair(v2, v4) = v3))
% 9.72/2.93  | (74)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (one_to_one(v2) = v1) |  ~ (one_to_one(v2) = v0))
% 9.72/2.93  | (75)  ! [v0] : ( ~ (function(v0) = 0) |  ? [v1] :  ? [v2] : ((v2 = 0 & v1 = 0 & one_to_one(v0) = 0 & relation(v0) = 0) | ( ~ (v1 = 0) & relation(v0) = v1) | ( ~ (v1 = 0) & empty(v0) = v1)))
% 9.72/2.93  | (76)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_intersection2(v0, v1) = v2) | set_intersection2(v1, v0) = v2)
% 9.72/2.93  | (77)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_intersection2(v1, v0) = v2) | set_intersection2(v0, v1) = v2)
% 9.72/2.93  | (78)  ! [v0] :  ! [v1] : (v1 = 0 |  ~ (function(v0) = v1) |  ? [v2] : ( ~ (v2 = 0) & empty(v0) = v2))
% 9.72/2.93  | (79)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (subset(v0, v1) = 0) |  ~ (in(v2, v0) = 0) | in(v2, v1) = 0)
% 9.72/2.93  | (80)  ! [v0] :  ! [v1] : ( ~ (in(v0, v1) = 0) |  ? [v2] : ( ~ (v2 = 0) & in(v1, v0) = v2))
% 9.72/2.93  | (81)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (set_intersection2(v0, v0) = v1))
% 9.72/2.93  | (82)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (set_intersection2(v3, v2) = v1) |  ~ (set_intersection2(v3, v2) = v0))
% 9.72/2.93  | (83) subset(all_0_8_8, all_0_7_7) = all_0_6_6
% 9.72/2.93  | (84)  ~ (all_0_3_3 = 0)
% 9.72/2.93  | (85)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (relation_restriction(v0, v1) = v2) |  ~ (relation(v0) = 0) |  ? [v3] : (cartesian_product2(v1, v1) = v3 & set_intersection2(v0, v3) = v2))
% 9.72/2.93  | (86)  ? [v0] :  ? [v1] :  ? [v2] : fiber(v1, v0) = v2
% 9.72/2.93  | (87) one_to_one(all_0_5_5) = 0
% 9.72/2.93  | (88)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (element(v0, v2) = v3) |  ~ (in(v0, v1) = 0) |  ? [v4] :  ? [v5] : ( ~ (v5 = 0) & powerset(v2) = v4 & element(v1, v4) = v5))
% 9.72/2.93  | (89)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (relation_restriction(v0, v1) = v2) |  ? [v3] : ((v3 = 0 & relation(v2) = 0) | ( ~ (v3 = 0) & relation(v0) = v3)))
% 9.72/2.94  | (90)  ! [v0] : ( ~ (empty(v0) = 0) |  ? [v1] :  ? [v2] :  ? [v3] : ((v3 = 0 & v2 = 0 & v1 = 0 & one_to_one(v0) = 0 & relation(v0) = 0 & function(v0) = 0) | ( ~ (v1 = 0) & relation(v0) = v1) | ( ~ (v1 = 0) & function(v0) = v1)))
% 9.72/2.94  | (91)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (in(v0, v1) = v2) |  ? [v3] : ((v3 = 0 & empty(v1) = 0) | ( ~ (v3 = 0) & element(v0, v1) = v3)))
% 9.72/2.94  | (92)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (fiber(v3, v2) = v1) |  ~ (fiber(v3, v2) = v0))
% 9.72/2.94  | (93)  ? [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = v0 |  ~ (fiber(v1, v2) = v3) |  ~ (relation(v1) = 0) |  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] : ((v4 = v2 | ( ~ (v7 = 0) & ordered_pair(v4, v2) = v6 & in(v6, v1) = v7) | ( ~ (v5 = 0) & in(v4, v0) = v5)) & ((v7 = 0 &  ~ (v4 = v2) & ordered_pair(v4, v2) = v6 & in(v6, v1) = 0) | (v5 = 0 & in(v4, v0) = 0))))
% 9.72/2.94  | (94)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (element(v0, v1) = v2) |  ? [v3] : ( ~ (v3 = 0) & in(v0, v1) = v3))
% 9.72/2.94  | (95)  ? [v0] :  ? [v1] : singleton(v0) = v1
% 9.72/2.94  | (96)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (cartesian_product2(v3, v2) = v1) |  ~ (cartesian_product2(v3, v2) = v0))
% 9.72/2.94  | (97)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (powerset(v1) = v2) |  ~ (element(v0, v2) = v3) |  ? [v4] : ( ~ (v4 = 0) & subset(v0, v1) = v4))
% 9.72/2.94  |
% 9.72/2.94  | Instantiating formula (89) with all_0_9_9, all_0_12_12, all_0_10_10 and discharging atoms relation_restriction(all_0_10_10, all_0_12_12) = all_0_9_9, yields:
% 9.72/2.94  | (98)  ? [v0] : ((v0 = 0 & relation(all_0_9_9) = 0) | ( ~ (v0 = 0) & relation(all_0_10_10) = v0))
% 9.72/2.94  |
% 9.72/2.94  | Instantiating formula (72) with all_0_6_6, all_0_7_7, all_0_8_8 and discharging atoms subset(all_0_8_8, all_0_7_7) = all_0_6_6, yields:
% 9.72/2.94  | (99) all_0_6_6 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & in(v0, all_0_7_7) = v1 & in(v0, all_0_8_8) = 0)
% 9.72/2.94  |
% 9.72/2.94  | Instantiating (98) with all_51_0_66 yields:
% 9.72/2.94  | (100) (all_51_0_66 = 0 & relation(all_0_9_9) = 0) | ( ~ (all_51_0_66 = 0) & relation(all_0_10_10) = all_51_0_66)
% 9.72/2.94  |
% 9.72/2.94  +-Applying beta-rule and splitting (99), into two cases.
% 9.72/2.94  |-Branch one:
% 9.72/2.94  | (101) all_0_6_6 = 0
% 9.72/2.94  |
% 9.72/2.94  	| Equations (101) can reduce 69 to:
% 9.72/2.94  	| (102) $false
% 9.72/2.94  	|
% 9.72/2.94  	|-The branch is then unsatisfiable
% 9.72/2.94  |-Branch two:
% 9.72/2.94  | (69)  ~ (all_0_6_6 = 0)
% 9.72/2.94  | (104)  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & in(v0, all_0_7_7) = v1 & in(v0, all_0_8_8) = 0)
% 9.72/2.94  |
% 9.72/2.94  	| Instantiating (104) with all_66_0_77, all_66_1_78 yields:
% 9.72/2.94  	| (105)  ~ (all_66_0_77 = 0) & in(all_66_1_78, all_0_7_7) = all_66_0_77 & in(all_66_1_78, all_0_8_8) = 0
% 9.72/2.94  	|
% 9.72/2.94  	| Applying alpha-rule on (105) yields:
% 9.72/2.94  	| (106)  ~ (all_66_0_77 = 0)
% 9.72/2.94  	| (107) in(all_66_1_78, all_0_7_7) = all_66_0_77
% 9.72/2.94  	| (108) in(all_66_1_78, all_0_8_8) = 0
% 9.72/2.94  	|
% 9.72/2.94  	+-Applying beta-rule and splitting (100), into two cases.
% 9.72/2.94  	|-Branch one:
% 9.72/2.94  	| (109) all_51_0_66 = 0 & relation(all_0_9_9) = 0
% 9.72/2.94  	|
% 9.72/2.94  		| Applying alpha-rule on (109) yields:
% 9.72/2.94  		| (110) all_51_0_66 = 0
% 9.72/2.94  		| (111) relation(all_0_9_9) = 0
% 9.72/2.94  		|
% 9.72/2.94  		| Instantiating formula (56) with all_66_0_77, all_66_1_78, all_0_7_7, all_0_11_11, all_0_10_10 and discharging atoms fiber(all_0_10_10, all_0_11_11) = all_0_7_7, relation(all_0_10_10) = 0, in(all_66_1_78, all_0_7_7) = all_66_0_77, yields:
% 9.72/2.94  		| (112) all_66_0_77 = 0 | all_66_1_78 = all_0_11_11 |  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & ordered_pair(all_66_1_78, all_0_11_11) = v0 & in(v0, all_0_10_10) = v1)
% 9.72/2.94  		|
% 9.72/2.94  		| Instantiating formula (91) with all_66_0_77, all_0_7_7, all_66_1_78 and discharging atoms in(all_66_1_78, all_0_7_7) = all_66_0_77, yields:
% 9.72/2.94  		| (113) all_66_0_77 = 0 |  ? [v0] : ((v0 = 0 & empty(all_0_7_7) = 0) | ( ~ (v0 = 0) & element(all_66_1_78, all_0_7_7) = v0))
% 9.72/2.94  		|
% 9.72/2.94  		| Instantiating formula (12) with all_66_1_78, all_0_8_8, all_0_11_11, all_0_9_9 and discharging atoms fiber(all_0_9_9, all_0_11_11) = all_0_8_8, relation(all_0_9_9) = 0, in(all_66_1_78, all_0_8_8) = 0, yields:
% 9.72/2.94  		| (114)  ? [v0] : (ordered_pair(all_66_1_78, all_0_11_11) = v0 & in(v0, all_0_9_9) = 0)
% 9.72/2.94  		|
% 9.72/2.94  		| Instantiating (114) with all_100_0_88 yields:
% 9.72/2.94  		| (115) ordered_pair(all_66_1_78, all_0_11_11) = all_100_0_88 & in(all_100_0_88, all_0_9_9) = 0
% 9.72/2.94  		|
% 9.72/2.94  		| Applying alpha-rule on (115) yields:
% 9.72/2.94  		| (116) ordered_pair(all_66_1_78, all_0_11_11) = all_100_0_88
% 9.72/2.94  		| (117) in(all_100_0_88, all_0_9_9) = 0
% 9.72/2.94  		|
% 9.72/2.94  		+-Applying beta-rule and splitting (113), into two cases.
% 9.72/2.94  		|-Branch one:
% 9.72/2.94  		| (118) all_66_0_77 = 0
% 9.72/2.94  		|
% 9.72/2.94  			| Equations (118) can reduce 106 to:
% 9.72/2.94  			| (102) $false
% 9.72/2.94  			|
% 9.72/2.94  			|-The branch is then unsatisfiable
% 9.72/2.94  		|-Branch two:
% 9.72/2.94  		| (106)  ~ (all_66_0_77 = 0)
% 9.72/2.94  		| (121)  ? [v0] : ((v0 = 0 & empty(all_0_7_7) = 0) | ( ~ (v0 = 0) & element(all_66_1_78, all_0_7_7) = v0))
% 9.72/2.94  		|
% 9.72/2.94  			| Instantiating formula (67) with all_100_0_88, all_66_1_78, all_0_8_8, all_0_11_11, all_0_9_9 and discharging atoms fiber(all_0_9_9, all_0_11_11) = all_0_8_8, ordered_pair(all_66_1_78, all_0_11_11) = all_100_0_88, relation(all_0_9_9) = 0, yields:
% 9.72/2.95  			| (122)  ? [v0] : ((v0 = 0 &  ~ (all_66_1_78 = all_0_11_11) & in(all_100_0_88, all_0_9_9) = 0) | ( ~ (v0 = 0) & in(all_66_1_78, all_0_8_8) = v0))
% 9.72/2.95  			|
% 9.72/2.95  			| Instantiating formula (16) with all_100_0_88, all_66_1_78, all_0_7_7, all_0_11_11, all_0_10_10 and discharging atoms fiber(all_0_10_10, all_0_11_11) = all_0_7_7, ordered_pair(all_66_1_78, all_0_11_11) = all_100_0_88, relation(all_0_10_10) = 0, yields:
% 9.72/2.95  			| (123) all_66_1_78 = all_0_11_11 |  ? [v0] : ((v0 = 0 & in(all_66_1_78, all_0_7_7) = 0) | ( ~ (v0 = 0) & in(all_100_0_88, all_0_10_10) = v0))
% 9.72/2.95  			|
% 9.72/2.95  			| Instantiating formula (6) with 0, all_0_9_9, all_0_10_10, all_0_12_12, all_100_0_88 and discharging atoms relation_restriction(all_0_10_10, all_0_12_12) = all_0_9_9, in(all_100_0_88, all_0_9_9) = 0, yields:
% 9.72/2.95  			| (124)  ? [v0] :  ? [v1] :  ? [v2] : ((v2 = 0 & v0 = 0 & cartesian_product2(all_0_12_12, all_0_12_12) = v1 & in(all_100_0_88, v1) = 0 & in(all_100_0_88, all_0_10_10) = 0) | ( ~ (v0 = 0) & relation(all_0_10_10) = v0))
% 9.72/2.95  			|
% 9.72/2.95  			| Instantiating (122) with all_124_0_94 yields:
% 9.72/2.95  			| (125) (all_124_0_94 = 0 &  ~ (all_66_1_78 = all_0_11_11) & in(all_100_0_88, all_0_9_9) = 0) | ( ~ (all_124_0_94 = 0) & in(all_66_1_78, all_0_8_8) = all_124_0_94)
% 9.72/2.95  			|
% 9.72/2.95  			| Instantiating (124) with all_136_0_105, all_136_1_106, all_136_2_107 yields:
% 9.72/2.95  			| (126) (all_136_0_105 = 0 & all_136_2_107 = 0 & cartesian_product2(all_0_12_12, all_0_12_12) = all_136_1_106 & in(all_100_0_88, all_136_1_106) = 0 & in(all_100_0_88, all_0_10_10) = 0) | ( ~ (all_136_2_107 = 0) & relation(all_0_10_10) = all_136_2_107)
% 9.72/2.95  			|
% 9.72/2.95  			+-Applying beta-rule and splitting (126), into two cases.
% 9.72/2.95  			|-Branch one:
% 9.72/2.95  			| (127) all_136_0_105 = 0 & all_136_2_107 = 0 & cartesian_product2(all_0_12_12, all_0_12_12) = all_136_1_106 & in(all_100_0_88, all_136_1_106) = 0 & in(all_100_0_88, all_0_10_10) = 0
% 9.72/2.95  			|
% 9.72/2.95  				| Applying alpha-rule on (127) yields:
% 9.72/2.95  				| (128) all_136_0_105 = 0
% 9.72/2.95  				| (129) in(all_100_0_88, all_0_10_10) = 0
% 9.72/2.95  				| (130) cartesian_product2(all_0_12_12, all_0_12_12) = all_136_1_106
% 9.72/2.95  				| (131) in(all_100_0_88, all_136_1_106) = 0
% 9.72/2.95  				| (132) all_136_2_107 = 0
% 9.72/2.95  				|
% 9.72/2.95  				+-Applying beta-rule and splitting (112), into two cases.
% 9.72/2.95  				|-Branch one:
% 9.72/2.95  				| (118) all_66_0_77 = 0
% 9.72/2.95  				|
% 9.72/2.95  					| Equations (118) can reduce 106 to:
% 9.72/2.95  					| (102) $false
% 9.72/2.95  					|
% 9.72/2.95  					|-The branch is then unsatisfiable
% 9.72/2.95  				|-Branch two:
% 9.72/2.95  				| (106)  ~ (all_66_0_77 = 0)
% 9.72/2.95  				| (136) all_66_1_78 = all_0_11_11 |  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & ordered_pair(all_66_1_78, all_0_11_11) = v0 & in(v0, all_0_10_10) = v1)
% 9.72/2.95  				|
% 9.72/2.95  					+-Applying beta-rule and splitting (125), into two cases.
% 9.72/2.95  					|-Branch one:
% 9.72/2.95  					| (137) all_124_0_94 = 0 &  ~ (all_66_1_78 = all_0_11_11) & in(all_100_0_88, all_0_9_9) = 0
% 9.72/2.95  					|
% 9.72/2.95  						| Applying alpha-rule on (137) yields:
% 9.72/2.95  						| (138) all_124_0_94 = 0
% 9.72/2.95  						| (139)  ~ (all_66_1_78 = all_0_11_11)
% 9.72/2.95  						| (117) in(all_100_0_88, all_0_9_9) = 0
% 9.72/2.95  						|
% 9.72/2.95  						+-Applying beta-rule and splitting (123), into two cases.
% 9.72/2.95  						|-Branch one:
% 9.72/2.95  						| (141) all_66_1_78 = all_0_11_11
% 9.72/2.95  						|
% 9.72/2.95  							| Equations (141) can reduce 139 to:
% 9.72/2.95  							| (102) $false
% 9.72/2.95  							|
% 9.72/2.95  							|-The branch is then unsatisfiable
% 9.72/2.95  						|-Branch two:
% 9.72/2.95  						| (139)  ~ (all_66_1_78 = all_0_11_11)
% 9.72/2.95  						| (144)  ? [v0] : ((v0 = 0 & in(all_66_1_78, all_0_7_7) = 0) | ( ~ (v0 = 0) & in(all_100_0_88, all_0_10_10) = v0))
% 9.72/2.95  						|
% 9.72/2.95  							| Instantiating (144) with all_183_0_112 yields:
% 9.72/2.95  							| (145) (all_183_0_112 = 0 & in(all_66_1_78, all_0_7_7) = 0) | ( ~ (all_183_0_112 = 0) & in(all_100_0_88, all_0_10_10) = all_183_0_112)
% 9.72/2.95  							|
% 9.72/2.95  							+-Applying beta-rule and splitting (145), into two cases.
% 9.72/2.95  							|-Branch one:
% 9.72/2.95  							| (146) all_183_0_112 = 0 & in(all_66_1_78, all_0_7_7) = 0
% 9.72/2.95  							|
% 9.72/2.95  								| Applying alpha-rule on (146) yields:
% 9.72/2.95  								| (147) all_183_0_112 = 0
% 9.72/2.95  								| (148) in(all_66_1_78, all_0_7_7) = 0
% 9.72/2.95  								|
% 9.72/2.95  								| Instantiating formula (21) with all_66_1_78, all_0_7_7, 0, all_66_0_77 and discharging atoms in(all_66_1_78, all_0_7_7) = all_66_0_77, in(all_66_1_78, all_0_7_7) = 0, yields:
% 9.72/2.95  								| (118) all_66_0_77 = 0
% 9.72/2.95  								|
% 9.72/2.95  								| Equations (118) can reduce 106 to:
% 9.72/2.95  								| (102) $false
% 9.72/2.95  								|
% 9.72/2.95  								|-The branch is then unsatisfiable
% 9.72/2.95  							|-Branch two:
% 9.72/2.95  							| (151)  ~ (all_183_0_112 = 0) & in(all_100_0_88, all_0_10_10) = all_183_0_112
% 9.72/2.95  							|
% 9.72/2.95  								| Applying alpha-rule on (151) yields:
% 9.72/2.95  								| (152)  ~ (all_183_0_112 = 0)
% 9.72/2.95  								| (153) in(all_100_0_88, all_0_10_10) = all_183_0_112
% 9.72/2.95  								|
% 9.72/2.95  								| Instantiating formula (21) with all_100_0_88, all_0_10_10, 0, all_183_0_112 and discharging atoms in(all_100_0_88, all_0_10_10) = all_183_0_112, in(all_100_0_88, all_0_10_10) = 0, yields:
% 9.72/2.95  								| (147) all_183_0_112 = 0
% 9.72/2.95  								|
% 9.72/2.95  								| Equations (147) can reduce 152 to:
% 9.72/2.95  								| (102) $false
% 9.72/2.95  								|
% 9.72/2.95  								|-The branch is then unsatisfiable
% 9.72/2.95  					|-Branch two:
% 9.72/2.95  					| (156)  ~ (all_124_0_94 = 0) & in(all_66_1_78, all_0_8_8) = all_124_0_94
% 9.72/2.95  					|
% 9.72/2.95  						| Applying alpha-rule on (156) yields:
% 9.72/2.95  						| (157)  ~ (all_124_0_94 = 0)
% 9.72/2.95  						| (158) in(all_66_1_78, all_0_8_8) = all_124_0_94
% 9.72/2.95  						|
% 9.72/2.95  						| Instantiating formula (21) with all_66_1_78, all_0_8_8, all_124_0_94, 0 and discharging atoms in(all_66_1_78, all_0_8_8) = all_124_0_94, in(all_66_1_78, all_0_8_8) = 0, yields:
% 9.72/2.95  						| (138) all_124_0_94 = 0
% 9.72/2.95  						|
% 9.72/2.95  						| Equations (138) can reduce 157 to:
% 9.72/2.95  						| (102) $false
% 9.72/2.95  						|
% 9.72/2.95  						|-The branch is then unsatisfiable
% 9.72/2.95  			|-Branch two:
% 9.72/2.95  			| (161)  ~ (all_136_2_107 = 0) & relation(all_0_10_10) = all_136_2_107
% 9.72/2.95  			|
% 9.72/2.95  				| Applying alpha-rule on (161) yields:
% 9.72/2.95  				| (162)  ~ (all_136_2_107 = 0)
% 9.72/2.95  				| (163) relation(all_0_10_10) = all_136_2_107
% 9.72/2.95  				|
% 9.72/2.95  				| Instantiating formula (29) with all_0_10_10, all_136_2_107, 0 and discharging atoms relation(all_0_10_10) = all_136_2_107, relation(all_0_10_10) = 0, yields:
% 9.72/2.95  				| (132) all_136_2_107 = 0
% 9.72/2.95  				|
% 9.72/2.95  				| Equations (132) can reduce 162 to:
% 9.72/2.95  				| (102) $false
% 9.72/2.95  				|
% 9.72/2.95  				|-The branch is then unsatisfiable
% 9.72/2.95  	|-Branch two:
% 9.72/2.95  	| (166)  ~ (all_51_0_66 = 0) & relation(all_0_10_10) = all_51_0_66
% 9.72/2.95  	|
% 9.72/2.95  		| Applying alpha-rule on (166) yields:
% 9.72/2.95  		| (167)  ~ (all_51_0_66 = 0)
% 9.72/2.95  		| (168) relation(all_0_10_10) = all_51_0_66
% 9.72/2.95  		|
% 9.72/2.95  		| Instantiating formula (29) with all_0_10_10, all_51_0_66, 0 and discharging atoms relation(all_0_10_10) = all_51_0_66, relation(all_0_10_10) = 0, yields:
% 9.72/2.95  		| (110) all_51_0_66 = 0
% 9.72/2.95  		|
% 9.72/2.95  		| Equations (110) can reduce 167 to:
% 9.72/2.95  		| (102) $false
% 9.72/2.95  		|
% 9.72/2.95  		|-The branch is then unsatisfiable
% 9.72/2.95  % SZS output end Proof for theBenchmark
% 9.72/2.95  
% 9.72/2.95  2366ms
%------------------------------------------------------------------------------