TSTP Solution File: SEU244+2 by E---3.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E---3.1
% Problem  : SEU244+2 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 2400s
% WCLimit  : 300s
% DateTime : Tue Oct 10 19:25:28 EDT 2023

% Result   : Theorem 0.67s 0.63s
% Output   : CNFRefutation 0.67s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   16
%            Number of leaves      :    8
% Syntax   : Number of formulae    :   65 (   7 unt;   0 def)
%            Number of atoms       :  247 (   0 equ)
%            Maximal formula atoms :   22 (   3 avg)
%            Number of connectives :  321 ( 139   ~; 139   |;  25   &)
%                                         (   9 <=>;   9  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   15 (   4 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :   14 (  13 usr;   1 prp; 0-2 aty)
%            Number of functors    :    2 (   2 usr;   1 con; 0-1 aty)
%            Number of variables   :   48 (   0 sgn;  18   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(t8_wellord1,conjecture,
    ! [X1] :
      ( relation(X1)
     => ( well_orders(X1,relation_field(X1))
      <=> well_ordering(X1) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.d0LNrglPFY/E---3.1_14073.p',t8_wellord1) ).

fof(d5_wellord1,axiom,
    ! [X1] :
      ( relation(X1)
     => ! [X2] :
          ( well_orders(X1,X2)
        <=> ( is_reflexive_in(X1,X2)
            & is_transitive_in(X1,X2)
            & is_antisymmetric_in(X1,X2)
            & is_connected_in(X1,X2)
            & is_well_founded_in(X1,X2) ) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.d0LNrglPFY/E---3.1_14073.p',d5_wellord1) ).

fof(d9_relat_2,axiom,
    ! [X1] :
      ( relation(X1)
     => ( reflexive(X1)
      <=> is_reflexive_in(X1,relation_field(X1)) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.d0LNrglPFY/E---3.1_14073.p',d9_relat_2) ).

fof(t5_wellord1,lemma,
    ! [X1] :
      ( relation(X1)
     => ( well_founded_relation(X1)
      <=> is_well_founded_in(X1,relation_field(X1)) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.d0LNrglPFY/E---3.1_14073.p',t5_wellord1) ).

fof(d14_relat_2,axiom,
    ! [X1] :
      ( relation(X1)
     => ( connected(X1)
      <=> is_connected_in(X1,relation_field(X1)) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.d0LNrglPFY/E---3.1_14073.p',d14_relat_2) ).

fof(d4_wellord1,axiom,
    ! [X1] :
      ( relation(X1)
     => ( well_ordering(X1)
      <=> ( reflexive(X1)
          & transitive(X1)
          & antisymmetric(X1)
          & connected(X1)
          & well_founded_relation(X1) ) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.d0LNrglPFY/E---3.1_14073.p',d4_wellord1) ).

fof(d12_relat_2,axiom,
    ! [X1] :
      ( relation(X1)
     => ( antisymmetric(X1)
      <=> is_antisymmetric_in(X1,relation_field(X1)) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.d0LNrglPFY/E---3.1_14073.p',d12_relat_2) ).

fof(d16_relat_2,axiom,
    ! [X1] :
      ( relation(X1)
     => ( transitive(X1)
      <=> is_transitive_in(X1,relation_field(X1)) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.d0LNrglPFY/E---3.1_14073.p',d16_relat_2) ).

fof(c_0_8,negated_conjecture,
    ~ ! [X1] :
        ( relation(X1)
       => ( well_orders(X1,relation_field(X1))
        <=> well_ordering(X1) ) ),
    inference(assume_negation,[status(cth)],[t8_wellord1]) ).

fof(c_0_9,plain,
    ! [X9,X10] :
      ( ( is_reflexive_in(X9,X10)
        | ~ well_orders(X9,X10)
        | ~ relation(X9) )
      & ( is_transitive_in(X9,X10)
        | ~ well_orders(X9,X10)
        | ~ relation(X9) )
      & ( is_antisymmetric_in(X9,X10)
        | ~ well_orders(X9,X10)
        | ~ relation(X9) )
      & ( is_connected_in(X9,X10)
        | ~ well_orders(X9,X10)
        | ~ relation(X9) )
      & ( is_well_founded_in(X9,X10)
        | ~ well_orders(X9,X10)
        | ~ relation(X9) )
      & ( ~ is_reflexive_in(X9,X10)
        | ~ is_transitive_in(X9,X10)
        | ~ is_antisymmetric_in(X9,X10)
        | ~ is_connected_in(X9,X10)
        | ~ is_well_founded_in(X9,X10)
        | well_orders(X9,X10)
        | ~ relation(X9) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d5_wellord1])])])]) ).

fof(c_0_10,negated_conjecture,
    ( relation(esk1_0)
    & ( ~ well_orders(esk1_0,relation_field(esk1_0))
      | ~ well_ordering(esk1_0) )
    & ( well_orders(esk1_0,relation_field(esk1_0))
      | well_ordering(esk1_0) ) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_8])])]) ).

fof(c_0_11,plain,
    ! [X41] :
      ( ( ~ reflexive(X41)
        | is_reflexive_in(X41,relation_field(X41))
        | ~ relation(X41) )
      & ( ~ is_reflexive_in(X41,relation_field(X41))
        | reflexive(X41)
        | ~ relation(X41) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d9_relat_2])])]) ).

fof(c_0_12,lemma,
    ! [X20] :
      ( ( ~ well_founded_relation(X20)
        | is_well_founded_in(X20,relation_field(X20))
        | ~ relation(X20) )
      & ( ~ is_well_founded_in(X20,relation_field(X20))
        | well_founded_relation(X20)
        | ~ relation(X20) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t5_wellord1])])]) ).

cnf(c_0_13,plain,
    ( is_well_founded_in(X1,X2)
    | ~ well_orders(X1,X2)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_14,negated_conjecture,
    ( well_orders(esk1_0,relation_field(esk1_0))
    | well_ordering(esk1_0) ),
    inference(split_conjunct,[status(thm)],[c_0_10]) ).

cnf(c_0_15,negated_conjecture,
    relation(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_10]) ).

fof(c_0_16,plain,
    ! [X21] :
      ( ( ~ connected(X21)
        | is_connected_in(X21,relation_field(X21))
        | ~ relation(X21) )
      & ( ~ is_connected_in(X21,relation_field(X21))
        | connected(X21)
        | ~ relation(X21) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d14_relat_2])])]) ).

cnf(c_0_17,plain,
    ( is_connected_in(X1,X2)
    | ~ well_orders(X1,X2)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_18,plain,
    ( reflexive(X1)
    | ~ is_reflexive_in(X1,relation_field(X1))
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_11]) ).

cnf(c_0_19,plain,
    ( is_reflexive_in(X1,X2)
    | ~ well_orders(X1,X2)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

fof(c_0_20,plain,
    ! [X8] :
      ( ( reflexive(X8)
        | ~ well_ordering(X8)
        | ~ relation(X8) )
      & ( transitive(X8)
        | ~ well_ordering(X8)
        | ~ relation(X8) )
      & ( antisymmetric(X8)
        | ~ well_ordering(X8)
        | ~ relation(X8) )
      & ( connected(X8)
        | ~ well_ordering(X8)
        | ~ relation(X8) )
      & ( well_founded_relation(X8)
        | ~ well_ordering(X8)
        | ~ relation(X8) )
      & ( ~ reflexive(X8)
        | ~ transitive(X8)
        | ~ antisymmetric(X8)
        | ~ connected(X8)
        | ~ well_founded_relation(X8)
        | well_ordering(X8)
        | ~ relation(X8) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d4_wellord1])])]) ).

cnf(c_0_21,lemma,
    ( well_founded_relation(X1)
    | ~ is_well_founded_in(X1,relation_field(X1))
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_22,negated_conjecture,
    ( well_ordering(esk1_0)
    | is_well_founded_in(esk1_0,relation_field(esk1_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_13,c_0_14]),c_0_15])]) ).

cnf(c_0_23,plain,
    ( connected(X1)
    | ~ is_connected_in(X1,relation_field(X1))
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_24,negated_conjecture,
    ( well_ordering(esk1_0)
    | is_connected_in(esk1_0,relation_field(esk1_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_17,c_0_14]),c_0_15])]) ).

fof(c_0_25,plain,
    ! [X27] :
      ( ( ~ antisymmetric(X27)
        | is_antisymmetric_in(X27,relation_field(X27))
        | ~ relation(X27) )
      & ( ~ is_antisymmetric_in(X27,relation_field(X27))
        | antisymmetric(X27)
        | ~ relation(X27) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d12_relat_2])])]) ).

cnf(c_0_26,plain,
    ( is_antisymmetric_in(X1,X2)
    | ~ well_orders(X1,X2)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

fof(c_0_27,plain,
    ! [X33] :
      ( ( ~ transitive(X33)
        | is_transitive_in(X33,relation_field(X33))
        | ~ relation(X33) )
      & ( ~ is_transitive_in(X33,relation_field(X33))
        | transitive(X33)
        | ~ relation(X33) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d16_relat_2])])]) ).

cnf(c_0_28,plain,
    ( is_transitive_in(X1,X2)
    | ~ well_orders(X1,X2)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_29,plain,
    ( reflexive(X1)
    | ~ well_orders(X1,relation_field(X1))
    | ~ relation(X1) ),
    inference(spm,[status(thm)],[c_0_18,c_0_19]) ).

cnf(c_0_30,plain,
    ( well_founded_relation(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

cnf(c_0_31,lemma,
    ( well_ordering(esk1_0)
    | well_founded_relation(esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_21,c_0_22]),c_0_15])]) ).

cnf(c_0_32,plain,
    ( connected(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

cnf(c_0_33,negated_conjecture,
    ( well_ordering(esk1_0)
    | connected(esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_24]),c_0_15])]) ).

cnf(c_0_34,plain,
    ( antisymmetric(X1)
    | ~ is_antisymmetric_in(X1,relation_field(X1))
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_25]) ).

cnf(c_0_35,negated_conjecture,
    ( well_ordering(esk1_0)
    | is_antisymmetric_in(esk1_0,relation_field(esk1_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_26,c_0_14]),c_0_15])]) ).

cnf(c_0_36,plain,
    ( transitive(X1)
    | ~ is_transitive_in(X1,relation_field(X1))
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_27]) ).

cnf(c_0_37,negated_conjecture,
    ( well_ordering(esk1_0)
    | is_transitive_in(esk1_0,relation_field(esk1_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_28,c_0_14]),c_0_15])]) ).

cnf(c_0_38,plain,
    ( well_ordering(X1)
    | ~ reflexive(X1)
    | ~ transitive(X1)
    | ~ antisymmetric(X1)
    | ~ connected(X1)
    | ~ well_founded_relation(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

cnf(c_0_39,negated_conjecture,
    ( reflexive(esk1_0)
    | well_ordering(esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_14]),c_0_15])]) ).

cnf(c_0_40,lemma,
    well_founded_relation(esk1_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_30,c_0_31]),c_0_15])]) ).

cnf(c_0_41,negated_conjecture,
    connected(esk1_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_33]),c_0_15])]) ).

cnf(c_0_42,negated_conjecture,
    ( well_ordering(esk1_0)
    | antisymmetric(esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_34,c_0_35]),c_0_15])]) ).

cnf(c_0_43,negated_conjecture,
    ( well_ordering(esk1_0)
    | transitive(esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_36,c_0_37]),c_0_15])]) ).

cnf(c_0_44,negated_conjecture,
    ( ~ well_orders(esk1_0,relation_field(esk1_0))
    | ~ well_ordering(esk1_0) ),
    inference(split_conjunct,[status(thm)],[c_0_10]) ).

cnf(c_0_45,negated_conjecture,
    well_ordering(esk1_0),
    inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38,c_0_39]),c_0_40]),c_0_41]),c_0_15])]),c_0_42]),c_0_43]) ).

cnf(c_0_46,plain,
    ( well_orders(X1,X2)
    | ~ is_reflexive_in(X1,X2)
    | ~ is_transitive_in(X1,X2)
    | ~ is_antisymmetric_in(X1,X2)
    | ~ is_connected_in(X1,X2)
    | ~ is_well_founded_in(X1,X2)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_47,plain,
    ( is_reflexive_in(X1,relation_field(X1))
    | ~ reflexive(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_11]) ).

cnf(c_0_48,negated_conjecture,
    ~ well_orders(esk1_0,relation_field(esk1_0)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_44,c_0_45])]) ).

cnf(c_0_49,plain,
    ( well_orders(X1,relation_field(X1))
    | ~ reflexive(X1)
    | ~ is_well_founded_in(X1,relation_field(X1))
    | ~ is_transitive_in(X1,relation_field(X1))
    | ~ is_connected_in(X1,relation_field(X1))
    | ~ is_antisymmetric_in(X1,relation_field(X1))
    | ~ relation(X1) ),
    inference(spm,[status(thm)],[c_0_46,c_0_47]) ).

cnf(c_0_50,negated_conjecture,
    ( ~ reflexive(esk1_0)
    | ~ is_well_founded_in(esk1_0,relation_field(esk1_0))
    | ~ is_transitive_in(esk1_0,relation_field(esk1_0))
    | ~ is_connected_in(esk1_0,relation_field(esk1_0))
    | ~ is_antisymmetric_in(esk1_0,relation_field(esk1_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48,c_0_49]),c_0_15])]) ).

cnf(c_0_51,lemma,
    ( is_well_founded_in(X1,relation_field(X1))
    | ~ well_founded_relation(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_52,lemma,
    ( ~ reflexive(esk1_0)
    | ~ is_transitive_in(esk1_0,relation_field(esk1_0))
    | ~ is_connected_in(esk1_0,relation_field(esk1_0))
    | ~ is_antisymmetric_in(esk1_0,relation_field(esk1_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50,c_0_51]),c_0_40]),c_0_15])]) ).

cnf(c_0_53,plain,
    ( is_connected_in(X1,relation_field(X1))
    | ~ connected(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_54,lemma,
    ( ~ reflexive(esk1_0)
    | ~ is_transitive_in(esk1_0,relation_field(esk1_0))
    | ~ is_antisymmetric_in(esk1_0,relation_field(esk1_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52,c_0_53]),c_0_41]),c_0_15])]) ).

cnf(c_0_55,plain,
    ( is_antisymmetric_in(X1,relation_field(X1))
    | ~ antisymmetric(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_25]) ).

cnf(c_0_56,lemma,
    ( ~ reflexive(esk1_0)
    | ~ is_transitive_in(esk1_0,relation_field(esk1_0))
    | ~ antisymmetric(esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_54,c_0_55]),c_0_15])]) ).

cnf(c_0_57,plain,
    ( is_transitive_in(X1,relation_field(X1))
    | ~ transitive(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_27]) ).

cnf(c_0_58,lemma,
    ( ~ reflexive(esk1_0)
    | ~ transitive(esk1_0)
    | ~ antisymmetric(esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_57]),c_0_15])]) ).

cnf(c_0_59,plain,
    ( reflexive(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

cnf(c_0_60,lemma,
    ( ~ transitive(esk1_0)
    | ~ antisymmetric(esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_58,c_0_59]),c_0_45]),c_0_15])]) ).

cnf(c_0_61,plain,
    ( transitive(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

cnf(c_0_62,lemma,
    ~ antisymmetric(esk1_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_60,c_0_61]),c_0_45]),c_0_15])]) ).

cnf(c_0_63,plain,
    ( antisymmetric(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

cnf(c_0_64,lemma,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62,c_0_63]),c_0_45]),c_0_15])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.15  % Problem    : SEU244+2 : TPTP v8.1.2. Released v3.3.0.
% 0.07/0.16  % Command    : run_E %s %d THM
% 0.17/0.37  % Computer : n007.cluster.edu
% 0.17/0.37  % Model    : x86_64 x86_64
% 0.17/0.37  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.17/0.37  % Memory   : 8042.1875MB
% 0.17/0.37  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.17/0.37  % CPULimit   : 2400
% 0.17/0.37  % WCLimit    : 300
% 0.17/0.37  % DateTime   : Mon Oct  2 08:57:24 EDT 2023
% 0.17/0.37  % CPUTime    : 
% 0.23/0.53  Running first-order theorem proving
% 0.23/0.53  Running: /export/starexec/sandbox2/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --auto-schedule=8 --cpu-limit=300 /export/starexec/sandbox2/tmp/tmp.d0LNrglPFY/E---3.1_14073.p
% 0.67/0.63  # Version: 3.1pre001
% 0.67/0.63  # Preprocessing class: FSLSSMSSSSSNFFN.
% 0.67/0.63  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.67/0.63  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 0.67/0.63  # Starting new_bool_3 with 300s (1) cores
% 0.67/0.63  # Starting new_bool_1 with 300s (1) cores
% 0.67/0.63  # Starting sh5l with 300s (1) cores
% 0.67/0.63  # new_bool_1 with pid 14208 completed with status 0
% 0.67/0.63  # Result found by new_bool_1
% 0.67/0.63  # Preprocessing class: FSLSSMSSSSSNFFN.
% 0.67/0.63  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.67/0.63  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 0.67/0.63  # Starting new_bool_3 with 300s (1) cores
% 0.67/0.63  # Starting new_bool_1 with 300s (1) cores
% 0.67/0.63  # SinE strategy is GSinE(CountFormulas,hypos,1.5,,3,20000,1.0)
% 0.67/0.63  # Search class: FGHSM-FSLM31-SFFFFFNN
% 0.67/0.63  # Scheduled 6 strats onto 1 cores with 300 seconds (300 total)
% 0.67/0.63  # Starting G-E--_302_C18_F1_URBAN_S5PRR_RG_S0Y with 163s (1) cores
% 0.67/0.63  # G-E--_302_C18_F1_URBAN_S5PRR_RG_S0Y with pid 14218 completed with status 0
% 0.67/0.63  # Result found by G-E--_302_C18_F1_URBAN_S5PRR_RG_S0Y
% 0.67/0.63  # Preprocessing class: FSLSSMSSSSSNFFN.
% 0.67/0.63  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.67/0.63  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 0.67/0.63  # Starting new_bool_3 with 300s (1) cores
% 0.67/0.63  # Starting new_bool_1 with 300s (1) cores
% 0.67/0.63  # SinE strategy is GSinE(CountFormulas,hypos,1.5,,3,20000,1.0)
% 0.67/0.63  # Search class: FGHSM-FSLM31-SFFFFFNN
% 0.67/0.63  # Scheduled 6 strats onto 1 cores with 300 seconds (300 total)
% 0.67/0.63  # Starting G-E--_302_C18_F1_URBAN_S5PRR_RG_S0Y with 163s (1) cores
% 0.67/0.63  # Preprocessing time       : 0.006 s
% 0.67/0.63  
% 0.67/0.63  # Proof found!
% 0.67/0.63  # SZS status Theorem
% 0.67/0.63  # SZS output start CNFRefutation
% See solution above
% 0.67/0.63  # Parsed axioms                        : 299
% 0.67/0.63  # Removed by relevancy pruning/SinE    : 190
% 0.67/0.63  # Initial clauses                      : 231
% 0.67/0.63  # Removed in clause preprocessing      : 2
% 0.67/0.63  # Initial clauses in saturation        : 229
% 0.67/0.63  # Processed clauses                    : 525
% 0.67/0.63  # ...of these trivial                  : 20
% 0.67/0.63  # ...subsumed                          : 133
% 0.67/0.63  # ...remaining for further processing  : 372
% 0.67/0.63  # Other redundant clauses eliminated   : 24
% 0.67/0.63  # Clauses deleted for lack of memory   : 0
% 0.67/0.63  # Backward-subsumed                    : 9
% 0.67/0.63  # Backward-rewritten                   : 34
% 0.67/0.63  # Generated clauses                    : 1910
% 0.67/0.63  # ...of the previous two non-redundant : 1621
% 0.67/0.63  # ...aggressively subsumed             : 0
% 0.67/0.63  # Contextual simplify-reflections      : 17
% 0.67/0.63  # Paramodulations                      : 1860
% 0.67/0.63  # Factorizations                       : 10
% 0.67/0.63  # NegExts                              : 0
% 0.67/0.63  # Equation resolutions                 : 40
% 0.67/0.63  # Total rewrite steps                  : 468
% 0.67/0.63  # Propositional unsat checks           : 0
% 0.67/0.63  #    Propositional check models        : 0
% 0.67/0.63  #    Propositional check unsatisfiable : 0
% 0.67/0.63  #    Propositional clauses             : 0
% 0.67/0.63  #    Propositional clauses after purity: 0
% 0.67/0.63  #    Propositional unsat core size     : 0
% 0.67/0.63  #    Propositional preprocessing time  : 0.000
% 0.67/0.63  #    Propositional encoding time       : 0.000
% 0.67/0.63  #    Propositional solver time         : 0.000
% 0.67/0.63  #    Success case prop preproc time    : 0.000
% 0.67/0.63  #    Success case prop encoding time   : 0.000
% 0.67/0.63  #    Success case prop solver time     : 0.000
% 0.67/0.63  # Current number of processed clauses  : 326
% 0.67/0.63  #    Positive orientable unit clauses  : 54
% 0.67/0.63  #    Positive unorientable unit clauses: 2
% 0.67/0.63  #    Negative unit clauses             : 17
% 0.67/0.63  #    Non-unit-clauses                  : 253
% 0.67/0.63  # Current number of unprocessed clauses: 1274
% 0.67/0.63  # ...number of literals in the above   : 4845
% 0.67/0.63  # Current number of archived formulas  : 0
% 0.67/0.63  # Current number of archived clauses   : 43
% 0.67/0.63  # Clause-clause subsumption calls (NU) : 18091
% 0.67/0.63  # Rec. Clause-clause subsumption calls : 10237
% 0.67/0.63  # Non-unit clause-clause subsumptions  : 101
% 0.67/0.63  # Unit Clause-clause subsumption calls : 1860
% 0.67/0.63  # Rewrite failures with RHS unbound    : 0
% 0.67/0.63  # BW rewrite match attempts            : 56
% 0.67/0.63  # BW rewrite match successes           : 26
% 0.67/0.63  # Condensation attempts                : 0
% 0.67/0.63  # Condensation successes               : 0
% 0.67/0.63  # Termbank termtop insertions          : 35781
% 0.67/0.63  
% 0.67/0.63  # -------------------------------------------------
% 0.67/0.63  # User time                : 0.076 s
% 0.67/0.63  # System time              : 0.010 s
% 0.67/0.63  # Total time               : 0.086 s
% 0.67/0.63  # Maximum resident set size: 2584 pages
% 0.67/0.63  
% 0.67/0.63  # -------------------------------------------------
% 0.67/0.63  # User time                : 0.083 s
% 0.67/0.63  # System time              : 0.013 s
% 0.67/0.63  # Total time               : 0.096 s
% 0.67/0.63  # Maximum resident set size: 2004 pages
% 0.67/0.63  % E---3.1 exiting
% 0.93/0.64  % E---3.1 exiting
%------------------------------------------------------------------------------