TSTP Solution File: SEU244+1 by SInE---0.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : SEU244+1 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : art05.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sun Dec 26 06:12:01 EST 2010

% Result   : Theorem 0.21s
% Output   : CNFRefutation 0.21s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   42
%            Number of leaves      :    8
% Syntax   : Number of formulae    :  117 (   6 unt;   0 def)
%            Number of atoms       :  527 (   0 equ)
%            Maximal formula atoms :   22 (   4 avg)
%            Number of connectives :  725 ( 315   ~; 328   |;  64   &)
%                                         (   9 <=>;   9  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   15 (   5 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :   14 (  13 usr;   1 prp; 0-2 aty)
%            Number of functors    :    2 (   2 usr;   1 con; 0-1 aty)
%            Number of variables   :   76 (   0 sgn  36   !;   2   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(3,axiom,
    ! [X1] :
      ( relation(X1)
     => ( well_ordering(X1)
      <=> ( reflexive(X1)
          & transitive(X1)
          & antisymmetric(X1)
          & connected(X1)
          & well_founded_relation(X1) ) ) ),
    file('/tmp/tmpv-iDHT/sel_SEU244+1.p_1',d4_wellord1) ).

fof(4,axiom,
    ! [X1] :
      ( relation(X1)
     => ( reflexive(X1)
      <=> is_reflexive_in(X1,relation_field(X1)) ) ),
    file('/tmp/tmpv-iDHT/sel_SEU244+1.p_1',d9_relat_2) ).

fof(6,axiom,
    ! [X1] :
      ( relation(X1)
     => ( transitive(X1)
      <=> is_transitive_in(X1,relation_field(X1)) ) ),
    file('/tmp/tmpv-iDHT/sel_SEU244+1.p_1',d16_relat_2) ).

fof(8,axiom,
    ! [X1] :
      ( relation(X1)
     => ! [X2] :
          ( well_orders(X1,X2)
        <=> ( is_reflexive_in(X1,X2)
            & is_transitive_in(X1,X2)
            & is_antisymmetric_in(X1,X2)
            & is_connected_in(X1,X2)
            & is_well_founded_in(X1,X2) ) ) ),
    file('/tmp/tmpv-iDHT/sel_SEU244+1.p_1',d5_wellord1) ).

fof(10,conjecture,
    ! [X1] :
      ( relation(X1)
     => ( well_orders(X1,relation_field(X1))
      <=> well_ordering(X1) ) ),
    file('/tmp/tmpv-iDHT/sel_SEU244+1.p_1',t8_wellord1) ).

fof(12,axiom,
    ! [X1] :
      ( relation(X1)
     => ( antisymmetric(X1)
      <=> is_antisymmetric_in(X1,relation_field(X1)) ) ),
    file('/tmp/tmpv-iDHT/sel_SEU244+1.p_1',d12_relat_2) ).

fof(14,axiom,
    ! [X1] :
      ( relation(X1)
     => ( connected(X1)
      <=> is_connected_in(X1,relation_field(X1)) ) ),
    file('/tmp/tmpv-iDHT/sel_SEU244+1.p_1',d14_relat_2) ).

fof(15,axiom,
    ! [X1] :
      ( relation(X1)
     => ( well_founded_relation(X1)
      <=> is_well_founded_in(X1,relation_field(X1)) ) ),
    file('/tmp/tmpv-iDHT/sel_SEU244+1.p_1',t5_wellord1) ).

fof(16,negated_conjecture,
    ~ ! [X1] :
        ( relation(X1)
       => ( well_orders(X1,relation_field(X1))
        <=> well_ordering(X1) ) ),
    inference(assume_negation,[status(cth)],[10]) ).

fof(19,plain,
    ! [X1] :
      ( ~ relation(X1)
      | ( ( ~ well_ordering(X1)
          | ( reflexive(X1)
            & transitive(X1)
            & antisymmetric(X1)
            & connected(X1)
            & well_founded_relation(X1) ) )
        & ( ~ reflexive(X1)
          | ~ transitive(X1)
          | ~ antisymmetric(X1)
          | ~ connected(X1)
          | ~ well_founded_relation(X1)
          | well_ordering(X1) ) ) ),
    inference(fof_nnf,[status(thm)],[3]) ).

fof(20,plain,
    ! [X2] :
      ( ~ relation(X2)
      | ( ( ~ well_ordering(X2)
          | ( reflexive(X2)
            & transitive(X2)
            & antisymmetric(X2)
            & connected(X2)
            & well_founded_relation(X2) ) )
        & ( ~ reflexive(X2)
          | ~ transitive(X2)
          | ~ antisymmetric(X2)
          | ~ connected(X2)
          | ~ well_founded_relation(X2)
          | well_ordering(X2) ) ) ),
    inference(variable_rename,[status(thm)],[19]) ).

fof(21,plain,
    ! [X2] :
      ( ( reflexive(X2)
        | ~ well_ordering(X2)
        | ~ relation(X2) )
      & ( transitive(X2)
        | ~ well_ordering(X2)
        | ~ relation(X2) )
      & ( antisymmetric(X2)
        | ~ well_ordering(X2)
        | ~ relation(X2) )
      & ( connected(X2)
        | ~ well_ordering(X2)
        | ~ relation(X2) )
      & ( well_founded_relation(X2)
        | ~ well_ordering(X2)
        | ~ relation(X2) )
      & ( ~ reflexive(X2)
        | ~ transitive(X2)
        | ~ antisymmetric(X2)
        | ~ connected(X2)
        | ~ well_founded_relation(X2)
        | well_ordering(X2)
        | ~ relation(X2) ) ),
    inference(distribute,[status(thm)],[20]) ).

cnf(22,plain,
    ( well_ordering(X1)
    | ~ relation(X1)
    | ~ well_founded_relation(X1)
    | ~ connected(X1)
    | ~ antisymmetric(X1)
    | ~ transitive(X1)
    | ~ reflexive(X1) ),
    inference(split_conjunct,[status(thm)],[21]) ).

cnf(23,plain,
    ( well_founded_relation(X1)
    | ~ relation(X1)
    | ~ well_ordering(X1) ),
    inference(split_conjunct,[status(thm)],[21]) ).

cnf(24,plain,
    ( connected(X1)
    | ~ relation(X1)
    | ~ well_ordering(X1) ),
    inference(split_conjunct,[status(thm)],[21]) ).

cnf(25,plain,
    ( antisymmetric(X1)
    | ~ relation(X1)
    | ~ well_ordering(X1) ),
    inference(split_conjunct,[status(thm)],[21]) ).

cnf(26,plain,
    ( transitive(X1)
    | ~ relation(X1)
    | ~ well_ordering(X1) ),
    inference(split_conjunct,[status(thm)],[21]) ).

cnf(27,plain,
    ( reflexive(X1)
    | ~ relation(X1)
    | ~ well_ordering(X1) ),
    inference(split_conjunct,[status(thm)],[21]) ).

fof(28,plain,
    ! [X1] :
      ( ~ relation(X1)
      | ( ( ~ reflexive(X1)
          | is_reflexive_in(X1,relation_field(X1)) )
        & ( ~ is_reflexive_in(X1,relation_field(X1))
          | reflexive(X1) ) ) ),
    inference(fof_nnf,[status(thm)],[4]) ).

fof(29,plain,
    ! [X2] :
      ( ~ relation(X2)
      | ( ( ~ reflexive(X2)
          | is_reflexive_in(X2,relation_field(X2)) )
        & ( ~ is_reflexive_in(X2,relation_field(X2))
          | reflexive(X2) ) ) ),
    inference(variable_rename,[status(thm)],[28]) ).

fof(30,plain,
    ! [X2] :
      ( ( ~ reflexive(X2)
        | is_reflexive_in(X2,relation_field(X2))
        | ~ relation(X2) )
      & ( ~ is_reflexive_in(X2,relation_field(X2))
        | reflexive(X2)
        | ~ relation(X2) ) ),
    inference(distribute,[status(thm)],[29]) ).

cnf(31,plain,
    ( reflexive(X1)
    | ~ relation(X1)
    | ~ is_reflexive_in(X1,relation_field(X1)) ),
    inference(split_conjunct,[status(thm)],[30]) ).

cnf(32,plain,
    ( is_reflexive_in(X1,relation_field(X1))
    | ~ relation(X1)
    | ~ reflexive(X1) ),
    inference(split_conjunct,[status(thm)],[30]) ).

fof(34,plain,
    ! [X1] :
      ( ~ relation(X1)
      | ( ( ~ transitive(X1)
          | is_transitive_in(X1,relation_field(X1)) )
        & ( ~ is_transitive_in(X1,relation_field(X1))
          | transitive(X1) ) ) ),
    inference(fof_nnf,[status(thm)],[6]) ).

fof(35,plain,
    ! [X2] :
      ( ~ relation(X2)
      | ( ( ~ transitive(X2)
          | is_transitive_in(X2,relation_field(X2)) )
        & ( ~ is_transitive_in(X2,relation_field(X2))
          | transitive(X2) ) ) ),
    inference(variable_rename,[status(thm)],[34]) ).

fof(36,plain,
    ! [X2] :
      ( ( ~ transitive(X2)
        | is_transitive_in(X2,relation_field(X2))
        | ~ relation(X2) )
      & ( ~ is_transitive_in(X2,relation_field(X2))
        | transitive(X2)
        | ~ relation(X2) ) ),
    inference(distribute,[status(thm)],[35]) ).

cnf(37,plain,
    ( transitive(X1)
    | ~ relation(X1)
    | ~ is_transitive_in(X1,relation_field(X1)) ),
    inference(split_conjunct,[status(thm)],[36]) ).

cnf(38,plain,
    ( is_transitive_in(X1,relation_field(X1))
    | ~ relation(X1)
    | ~ transitive(X1) ),
    inference(split_conjunct,[status(thm)],[36]) ).

fof(42,plain,
    ! [X1] :
      ( ~ relation(X1)
      | ! [X2] :
          ( ( ~ well_orders(X1,X2)
            | ( is_reflexive_in(X1,X2)
              & is_transitive_in(X1,X2)
              & is_antisymmetric_in(X1,X2)
              & is_connected_in(X1,X2)
              & is_well_founded_in(X1,X2) ) )
          & ( ~ is_reflexive_in(X1,X2)
            | ~ is_transitive_in(X1,X2)
            | ~ is_antisymmetric_in(X1,X2)
            | ~ is_connected_in(X1,X2)
            | ~ is_well_founded_in(X1,X2)
            | well_orders(X1,X2) ) ) ),
    inference(fof_nnf,[status(thm)],[8]) ).

fof(43,plain,
    ! [X3] :
      ( ~ relation(X3)
      | ! [X4] :
          ( ( ~ well_orders(X3,X4)
            | ( is_reflexive_in(X3,X4)
              & is_transitive_in(X3,X4)
              & is_antisymmetric_in(X3,X4)
              & is_connected_in(X3,X4)
              & is_well_founded_in(X3,X4) ) )
          & ( ~ is_reflexive_in(X3,X4)
            | ~ is_transitive_in(X3,X4)
            | ~ is_antisymmetric_in(X3,X4)
            | ~ is_connected_in(X3,X4)
            | ~ is_well_founded_in(X3,X4)
            | well_orders(X3,X4) ) ) ),
    inference(variable_rename,[status(thm)],[42]) ).

fof(44,plain,
    ! [X3,X4] :
      ( ( ( ~ well_orders(X3,X4)
          | ( is_reflexive_in(X3,X4)
            & is_transitive_in(X3,X4)
            & is_antisymmetric_in(X3,X4)
            & is_connected_in(X3,X4)
            & is_well_founded_in(X3,X4) ) )
        & ( ~ is_reflexive_in(X3,X4)
          | ~ is_transitive_in(X3,X4)
          | ~ is_antisymmetric_in(X3,X4)
          | ~ is_connected_in(X3,X4)
          | ~ is_well_founded_in(X3,X4)
          | well_orders(X3,X4) ) )
      | ~ relation(X3) ),
    inference(shift_quantors,[status(thm)],[43]) ).

fof(45,plain,
    ! [X3,X4] :
      ( ( is_reflexive_in(X3,X4)
        | ~ well_orders(X3,X4)
        | ~ relation(X3) )
      & ( is_transitive_in(X3,X4)
        | ~ well_orders(X3,X4)
        | ~ relation(X3) )
      & ( is_antisymmetric_in(X3,X4)
        | ~ well_orders(X3,X4)
        | ~ relation(X3) )
      & ( is_connected_in(X3,X4)
        | ~ well_orders(X3,X4)
        | ~ relation(X3) )
      & ( is_well_founded_in(X3,X4)
        | ~ well_orders(X3,X4)
        | ~ relation(X3) )
      & ( ~ is_reflexive_in(X3,X4)
        | ~ is_transitive_in(X3,X4)
        | ~ is_antisymmetric_in(X3,X4)
        | ~ is_connected_in(X3,X4)
        | ~ is_well_founded_in(X3,X4)
        | well_orders(X3,X4)
        | ~ relation(X3) ) ),
    inference(distribute,[status(thm)],[44]) ).

cnf(46,plain,
    ( well_orders(X1,X2)
    | ~ relation(X1)
    | ~ is_well_founded_in(X1,X2)
    | ~ is_connected_in(X1,X2)
    | ~ is_antisymmetric_in(X1,X2)
    | ~ is_transitive_in(X1,X2)
    | ~ is_reflexive_in(X1,X2) ),
    inference(split_conjunct,[status(thm)],[45]) ).

cnf(47,plain,
    ( is_well_founded_in(X1,X2)
    | ~ relation(X1)
    | ~ well_orders(X1,X2) ),
    inference(split_conjunct,[status(thm)],[45]) ).

cnf(48,plain,
    ( is_connected_in(X1,X2)
    | ~ relation(X1)
    | ~ well_orders(X1,X2) ),
    inference(split_conjunct,[status(thm)],[45]) ).

cnf(49,plain,
    ( is_antisymmetric_in(X1,X2)
    | ~ relation(X1)
    | ~ well_orders(X1,X2) ),
    inference(split_conjunct,[status(thm)],[45]) ).

cnf(50,plain,
    ( is_transitive_in(X1,X2)
    | ~ relation(X1)
    | ~ well_orders(X1,X2) ),
    inference(split_conjunct,[status(thm)],[45]) ).

cnf(51,plain,
    ( is_reflexive_in(X1,X2)
    | ~ relation(X1)
    | ~ well_orders(X1,X2) ),
    inference(split_conjunct,[status(thm)],[45]) ).

fof(54,negated_conjecture,
    ? [X1] :
      ( relation(X1)
      & ( ~ well_orders(X1,relation_field(X1))
        | ~ well_ordering(X1) )
      & ( well_orders(X1,relation_field(X1))
        | well_ordering(X1) ) ),
    inference(fof_nnf,[status(thm)],[16]) ).

fof(55,negated_conjecture,
    ? [X2] :
      ( relation(X2)
      & ( ~ well_orders(X2,relation_field(X2))
        | ~ well_ordering(X2) )
      & ( well_orders(X2,relation_field(X2))
        | well_ordering(X2) ) ),
    inference(variable_rename,[status(thm)],[54]) ).

fof(56,negated_conjecture,
    ( relation(esk1_0)
    & ( ~ well_orders(esk1_0,relation_field(esk1_0))
      | ~ well_ordering(esk1_0) )
    & ( well_orders(esk1_0,relation_field(esk1_0))
      | well_ordering(esk1_0) ) ),
    inference(skolemize,[status(esa)],[55]) ).

cnf(57,negated_conjecture,
    ( well_ordering(esk1_0)
    | well_orders(esk1_0,relation_field(esk1_0)) ),
    inference(split_conjunct,[status(thm)],[56]) ).

cnf(58,negated_conjecture,
    ( ~ well_ordering(esk1_0)
    | ~ well_orders(esk1_0,relation_field(esk1_0)) ),
    inference(split_conjunct,[status(thm)],[56]) ).

cnf(59,negated_conjecture,
    relation(esk1_0),
    inference(split_conjunct,[status(thm)],[56]) ).

fof(61,plain,
    ! [X1] :
      ( ~ relation(X1)
      | ( ( ~ antisymmetric(X1)
          | is_antisymmetric_in(X1,relation_field(X1)) )
        & ( ~ is_antisymmetric_in(X1,relation_field(X1))
          | antisymmetric(X1) ) ) ),
    inference(fof_nnf,[status(thm)],[12]) ).

fof(62,plain,
    ! [X2] :
      ( ~ relation(X2)
      | ( ( ~ antisymmetric(X2)
          | is_antisymmetric_in(X2,relation_field(X2)) )
        & ( ~ is_antisymmetric_in(X2,relation_field(X2))
          | antisymmetric(X2) ) ) ),
    inference(variable_rename,[status(thm)],[61]) ).

fof(63,plain,
    ! [X2] :
      ( ( ~ antisymmetric(X2)
        | is_antisymmetric_in(X2,relation_field(X2))
        | ~ relation(X2) )
      & ( ~ is_antisymmetric_in(X2,relation_field(X2))
        | antisymmetric(X2)
        | ~ relation(X2) ) ),
    inference(distribute,[status(thm)],[62]) ).

cnf(64,plain,
    ( antisymmetric(X1)
    | ~ relation(X1)
    | ~ is_antisymmetric_in(X1,relation_field(X1)) ),
    inference(split_conjunct,[status(thm)],[63]) ).

cnf(65,plain,
    ( is_antisymmetric_in(X1,relation_field(X1))
    | ~ relation(X1)
    | ~ antisymmetric(X1) ),
    inference(split_conjunct,[status(thm)],[63]) ).

fof(68,plain,
    ! [X1] :
      ( ~ relation(X1)
      | ( ( ~ connected(X1)
          | is_connected_in(X1,relation_field(X1)) )
        & ( ~ is_connected_in(X1,relation_field(X1))
          | connected(X1) ) ) ),
    inference(fof_nnf,[status(thm)],[14]) ).

fof(69,plain,
    ! [X2] :
      ( ~ relation(X2)
      | ( ( ~ connected(X2)
          | is_connected_in(X2,relation_field(X2)) )
        & ( ~ is_connected_in(X2,relation_field(X2))
          | connected(X2) ) ) ),
    inference(variable_rename,[status(thm)],[68]) ).

fof(70,plain,
    ! [X2] :
      ( ( ~ connected(X2)
        | is_connected_in(X2,relation_field(X2))
        | ~ relation(X2) )
      & ( ~ is_connected_in(X2,relation_field(X2))
        | connected(X2)
        | ~ relation(X2) ) ),
    inference(distribute,[status(thm)],[69]) ).

cnf(71,plain,
    ( connected(X1)
    | ~ relation(X1)
    | ~ is_connected_in(X1,relation_field(X1)) ),
    inference(split_conjunct,[status(thm)],[70]) ).

cnf(72,plain,
    ( is_connected_in(X1,relation_field(X1))
    | ~ relation(X1)
    | ~ connected(X1) ),
    inference(split_conjunct,[status(thm)],[70]) ).

fof(73,plain,
    ! [X1] :
      ( ~ relation(X1)
      | ( ( ~ well_founded_relation(X1)
          | is_well_founded_in(X1,relation_field(X1)) )
        & ( ~ is_well_founded_in(X1,relation_field(X1))
          | well_founded_relation(X1) ) ) ),
    inference(fof_nnf,[status(thm)],[15]) ).

fof(74,plain,
    ! [X2] :
      ( ~ relation(X2)
      | ( ( ~ well_founded_relation(X2)
          | is_well_founded_in(X2,relation_field(X2)) )
        & ( ~ is_well_founded_in(X2,relation_field(X2))
          | well_founded_relation(X2) ) ) ),
    inference(variable_rename,[status(thm)],[73]) ).

fof(75,plain,
    ! [X2] :
      ( ( ~ well_founded_relation(X2)
        | is_well_founded_in(X2,relation_field(X2))
        | ~ relation(X2) )
      & ( ~ is_well_founded_in(X2,relation_field(X2))
        | well_founded_relation(X2)
        | ~ relation(X2) ) ),
    inference(distribute,[status(thm)],[74]) ).

cnf(76,plain,
    ( well_founded_relation(X1)
    | ~ relation(X1)
    | ~ is_well_founded_in(X1,relation_field(X1)) ),
    inference(split_conjunct,[status(thm)],[75]) ).

cnf(77,plain,
    ( is_well_founded_in(X1,relation_field(X1))
    | ~ relation(X1)
    | ~ well_founded_relation(X1) ),
    inference(split_conjunct,[status(thm)],[75]) ).

cnf(83,plain,
    ( reflexive(X1)
    | ~ relation(X1)
    | ~ well_orders(X1,relation_field(X1)) ),
    inference(spm,[status(thm)],[31,51,theory(equality)]) ).

cnf(85,plain,
    ( transitive(X1)
    | ~ relation(X1)
    | ~ well_orders(X1,relation_field(X1)) ),
    inference(spm,[status(thm)],[37,50,theory(equality)]) ).

cnf(87,plain,
    ( antisymmetric(X1)
    | ~ relation(X1)
    | ~ well_orders(X1,relation_field(X1)) ),
    inference(spm,[status(thm)],[64,49,theory(equality)]) ).

cnf(89,plain,
    ( connected(X1)
    | ~ relation(X1)
    | ~ well_orders(X1,relation_field(X1)) ),
    inference(spm,[status(thm)],[71,48,theory(equality)]) ).

cnf(91,plain,
    ( well_founded_relation(X1)
    | ~ relation(X1)
    | ~ well_orders(X1,relation_field(X1)) ),
    inference(spm,[status(thm)],[76,47,theory(equality)]) ).

cnf(95,plain,
    ( well_orders(X1,relation_field(X1))
    | ~ is_connected_in(X1,relation_field(X1))
    | ~ is_antisymmetric_in(X1,relation_field(X1))
    | ~ is_transitive_in(X1,relation_field(X1))
    | ~ is_reflexive_in(X1,relation_field(X1))
    | ~ relation(X1)
    | ~ well_founded_relation(X1) ),
    inference(spm,[status(thm)],[46,77,theory(equality)]) ).

cnf(96,negated_conjecture,
    ( reflexive(esk1_0)
    | well_ordering(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[83,57,theory(equality)]) ).

cnf(97,negated_conjecture,
    ( reflexive(esk1_0)
    | well_ordering(esk1_0)
    | $false ),
    inference(rw,[status(thm)],[96,59,theory(equality)]) ).

cnf(98,negated_conjecture,
    ( reflexive(esk1_0)
    | well_ordering(esk1_0) ),
    inference(cn,[status(thm)],[97,theory(equality)]) ).

cnf(99,negated_conjecture,
    ( transitive(esk1_0)
    | well_ordering(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[85,57,theory(equality)]) ).

cnf(100,negated_conjecture,
    ( transitive(esk1_0)
    | well_ordering(esk1_0)
    | $false ),
    inference(rw,[status(thm)],[99,59,theory(equality)]) ).

cnf(101,negated_conjecture,
    ( transitive(esk1_0)
    | well_ordering(esk1_0) ),
    inference(cn,[status(thm)],[100,theory(equality)]) ).

cnf(102,negated_conjecture,
    ( antisymmetric(esk1_0)
    | well_ordering(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[87,57,theory(equality)]) ).

cnf(103,negated_conjecture,
    ( antisymmetric(esk1_0)
    | well_ordering(esk1_0)
    | $false ),
    inference(rw,[status(thm)],[102,59,theory(equality)]) ).

cnf(104,negated_conjecture,
    ( antisymmetric(esk1_0)
    | well_ordering(esk1_0) ),
    inference(cn,[status(thm)],[103,theory(equality)]) ).

cnf(105,negated_conjecture,
    ( connected(esk1_0)
    | well_ordering(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[89,57,theory(equality)]) ).

cnf(106,negated_conjecture,
    ( connected(esk1_0)
    | well_ordering(esk1_0)
    | $false ),
    inference(rw,[status(thm)],[105,59,theory(equality)]) ).

cnf(107,negated_conjecture,
    ( connected(esk1_0)
    | well_ordering(esk1_0) ),
    inference(cn,[status(thm)],[106,theory(equality)]) ).

cnf(108,negated_conjecture,
    ( well_founded_relation(esk1_0)
    | well_ordering(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[91,57,theory(equality)]) ).

cnf(109,negated_conjecture,
    ( well_founded_relation(esk1_0)
    | well_ordering(esk1_0)
    | $false ),
    inference(rw,[status(thm)],[108,59,theory(equality)]) ).

cnf(110,negated_conjecture,
    ( well_founded_relation(esk1_0)
    | well_ordering(esk1_0) ),
    inference(cn,[status(thm)],[109,theory(equality)]) ).

cnf(111,negated_conjecture,
    ( well_ordering(esk1_0)
    | ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[22,110,theory(equality)]) ).

cnf(112,negated_conjecture,
    ( well_ordering(esk1_0)
    | ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | $false ),
    inference(rw,[status(thm)],[111,59,theory(equality)]) ).

cnf(113,negated_conjecture,
    ( well_ordering(esk1_0)
    | ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0) ),
    inference(cn,[status(thm)],[112,theory(equality)]) ).

cnf(114,negated_conjecture,
    ( well_ordering(esk1_0)
    | ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0) ),
    inference(csr,[status(thm)],[113,98]) ).

cnf(115,negated_conjecture,
    ( well_ordering(esk1_0)
    | ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0) ),
    inference(csr,[status(thm)],[114,101]) ).

cnf(116,negated_conjecture,
    ( well_ordering(esk1_0)
    | ~ connected(esk1_0) ),
    inference(csr,[status(thm)],[115,104]) ).

cnf(117,negated_conjecture,
    well_ordering(esk1_0),
    inference(csr,[status(thm)],[116,107]) ).

cnf(123,negated_conjecture,
    ( ~ well_orders(esk1_0,relation_field(esk1_0))
    | $false ),
    inference(rw,[status(thm)],[58,117,theory(equality)]) ).

cnf(124,negated_conjecture,
    ~ well_orders(esk1_0,relation_field(esk1_0)),
    inference(cn,[status(thm)],[123,theory(equality)]) ).

cnf(127,plain,
    ( well_orders(X1,relation_field(X1))
    | ~ is_antisymmetric_in(X1,relation_field(X1))
    | ~ is_transitive_in(X1,relation_field(X1))
    | ~ is_reflexive_in(X1,relation_field(X1))
    | ~ well_founded_relation(X1)
    | ~ relation(X1)
    | ~ connected(X1) ),
    inference(spm,[status(thm)],[95,72,theory(equality)]) ).

cnf(129,plain,
    ( well_orders(X1,relation_field(X1))
    | ~ is_transitive_in(X1,relation_field(X1))
    | ~ is_reflexive_in(X1,relation_field(X1))
    | ~ well_founded_relation(X1)
    | ~ connected(X1)
    | ~ relation(X1)
    | ~ antisymmetric(X1) ),
    inference(spm,[status(thm)],[127,65,theory(equality)]) ).

cnf(131,plain,
    ( well_orders(X1,relation_field(X1))
    | ~ is_reflexive_in(X1,relation_field(X1))
    | ~ well_founded_relation(X1)
    | ~ connected(X1)
    | ~ antisymmetric(X1)
    | ~ relation(X1)
    | ~ transitive(X1) ),
    inference(spm,[status(thm)],[129,38,theory(equality)]) ).

cnf(133,plain,
    ( well_orders(X1,relation_field(X1))
    | ~ well_founded_relation(X1)
    | ~ connected(X1)
    | ~ antisymmetric(X1)
    | ~ transitive(X1)
    | ~ relation(X1)
    | ~ reflexive(X1) ),
    inference(spm,[status(thm)],[131,32,theory(equality)]) ).

cnf(134,negated_conjecture,
    ( ~ well_founded_relation(esk1_0)
    | ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[124,133,theory(equality)]) ).

cnf(140,negated_conjecture,
    ( ~ well_founded_relation(esk1_0)
    | ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | $false ),
    inference(rw,[status(thm)],[134,59,theory(equality)]) ).

cnf(141,negated_conjecture,
    ( ~ well_founded_relation(esk1_0)
    | ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0) ),
    inference(cn,[status(thm)],[140,theory(equality)]) ).

cnf(142,negated_conjecture,
    ( ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | ~ well_ordering(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[141,23,theory(equality)]) ).

cnf(143,negated_conjecture,
    ( ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | $false
    | ~ relation(esk1_0) ),
    inference(rw,[status(thm)],[142,117,theory(equality)]) ).

cnf(144,negated_conjecture,
    ( ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | $false
    | $false ),
    inference(rw,[status(thm)],[143,59,theory(equality)]) ).

cnf(145,negated_conjecture,
    ( ~ connected(esk1_0)
    | ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0) ),
    inference(cn,[status(thm)],[144,theory(equality)]) ).

cnf(146,negated_conjecture,
    ( ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | ~ well_ordering(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[145,24,theory(equality)]) ).

cnf(147,negated_conjecture,
    ( ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | $false
    | ~ relation(esk1_0) ),
    inference(rw,[status(thm)],[146,117,theory(equality)]) ).

cnf(148,negated_conjecture,
    ( ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | $false
    | $false ),
    inference(rw,[status(thm)],[147,59,theory(equality)]) ).

cnf(149,negated_conjecture,
    ( ~ antisymmetric(esk1_0)
    | ~ transitive(esk1_0)
    | ~ reflexive(esk1_0) ),
    inference(cn,[status(thm)],[148,theory(equality)]) ).

cnf(150,negated_conjecture,
    ( ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | ~ well_ordering(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[149,25,theory(equality)]) ).

cnf(151,negated_conjecture,
    ( ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | $false
    | ~ relation(esk1_0) ),
    inference(rw,[status(thm)],[150,117,theory(equality)]) ).

cnf(152,negated_conjecture,
    ( ~ transitive(esk1_0)
    | ~ reflexive(esk1_0)
    | $false
    | $false ),
    inference(rw,[status(thm)],[151,59,theory(equality)]) ).

cnf(153,negated_conjecture,
    ( ~ transitive(esk1_0)
    | ~ reflexive(esk1_0) ),
    inference(cn,[status(thm)],[152,theory(equality)]) ).

cnf(154,negated_conjecture,
    ( ~ reflexive(esk1_0)
    | ~ well_ordering(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[153,26,theory(equality)]) ).

cnf(155,negated_conjecture,
    ( ~ reflexive(esk1_0)
    | $false
    | ~ relation(esk1_0) ),
    inference(rw,[status(thm)],[154,117,theory(equality)]) ).

cnf(156,negated_conjecture,
    ( ~ reflexive(esk1_0)
    | $false
    | $false ),
    inference(rw,[status(thm)],[155,59,theory(equality)]) ).

cnf(157,negated_conjecture,
    ~ reflexive(esk1_0),
    inference(cn,[status(thm)],[156,theory(equality)]) ).

cnf(158,negated_conjecture,
    ( ~ well_ordering(esk1_0)
    | ~ relation(esk1_0) ),
    inference(spm,[status(thm)],[157,27,theory(equality)]) ).

cnf(159,negated_conjecture,
    ( $false
    | ~ relation(esk1_0) ),
    inference(rw,[status(thm)],[158,117,theory(equality)]) ).

cnf(160,negated_conjecture,
    ( $false
    | $false ),
    inference(rw,[status(thm)],[159,59,theory(equality)]) ).

cnf(161,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[160,theory(equality)]) ).

cnf(162,negated_conjecture,
    $false,
    161,
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % SZS status Started for /home/graph/tptp/TPTP/Problems/SEU/SEU244+1.p
% --creating new selector for []
% -running prover on /tmp/tmpv-iDHT/sel_SEU244+1.p_1 with time limit 29
% -prover status Theorem
% Problem SEU244+1.p solved in phase 0.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/SEU/SEU244+1.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/SEU/SEU244+1.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
% 
%------------------------------------------------------------------------------