TSTP Solution File: SEU244+1 by Drodi---3.5.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Drodi---3.5.1
% Problem  : SEU244+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : drodi -learnfrom(drodi.lrn) -timeout(%d) %s

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed May 31 12:36:27 EDT 2023

% Result   : Theorem 0.14s 0.37s
% Output   : CNFRefutation 0.14s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    9
%            Number of leaves      :   21
% Syntax   : Number of formulae    :  126 (   3 unt;   0 def)
%            Number of atoms       :  424 (   0 equ)
%            Maximal formula atoms :   13 (   3 avg)
%            Number of connectives :  516 ( 218   ~; 218   |;  41   &)
%                                         (  29 <=>;   9  =>;   0  <=;   1 <~>)
%            Maximal formula depth :   11 (   4 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :   27 (  26 usr;  14 prp; 0-2 aty)
%            Number of functors    :    2 (   2 usr;   1 con; 0-1 aty)
%            Number of variables   :   60 (;  58   !;   2   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(f2,axiom,
    ! [A] :
      ( relation(A)
     => ( antisymmetric(A)
      <=> is_antisymmetric_in(A,relation_field(A)) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p') ).

fof(f3,axiom,
    ! [A] :
      ( relation(A)
     => ( connected(A)
      <=> is_connected_in(A,relation_field(A)) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p') ).

fof(f4,axiom,
    ! [A] :
      ( relation(A)
     => ( transitive(A)
      <=> is_transitive_in(A,relation_field(A)) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p') ).

fof(f5,axiom,
    ! [A] :
      ( relation(A)
     => ( well_ordering(A)
      <=> ( reflexive(A)
          & transitive(A)
          & antisymmetric(A)
          & connected(A)
          & well_founded_relation(A) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p') ).

fof(f6,axiom,
    ! [A] :
      ( relation(A)
     => ! [B] :
          ( well_orders(A,B)
        <=> ( is_reflexive_in(A,B)
            & is_transitive_in(A,B)
            & is_antisymmetric_in(A,B)
            & is_connected_in(A,B)
            & is_well_founded_in(A,B) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p') ).

fof(f8,axiom,
    ! [A] :
      ( relation(A)
     => ( reflexive(A)
      <=> is_reflexive_in(A,relation_field(A)) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p') ).

fof(f14,axiom,
    ! [A] :
      ( relation(A)
     => ( well_founded_relation(A)
      <=> is_well_founded_in(A,relation_field(A)) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p') ).

fof(f15,conjecture,
    ! [A] :
      ( relation(A)
     => ( well_orders(A,relation_field(A))
      <=> well_ordering(A) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p') ).

fof(f16,negated_conjecture,
    ~ ! [A] :
        ( relation(A)
       => ( well_orders(A,relation_field(A))
        <=> well_ordering(A) ) ),
    inference(negated_conjecture,[status(cth)],[f15]) ).

fof(f18,plain,
    ! [A] :
      ( ~ relation(A)
      | ( antisymmetric(A)
      <=> is_antisymmetric_in(A,relation_field(A)) ) ),
    inference(pre_NNF_transformation,[status(esa)],[f2]) ).

fof(f19,plain,
    ! [A] :
      ( ~ relation(A)
      | ( ( ~ antisymmetric(A)
          | is_antisymmetric_in(A,relation_field(A)) )
        & ( antisymmetric(A)
          | ~ is_antisymmetric_in(A,relation_field(A)) ) ) ),
    inference(NNF_transformation,[status(esa)],[f18]) ).

fof(f20,plain,
    ! [X0] :
      ( ~ relation(X0)
      | ~ antisymmetric(X0)
      | is_antisymmetric_in(X0,relation_field(X0)) ),
    inference(cnf_transformation,[status(esa)],[f19]) ).

fof(f21,plain,
    ! [X0] :
      ( ~ relation(X0)
      | antisymmetric(X0)
      | ~ is_antisymmetric_in(X0,relation_field(X0)) ),
    inference(cnf_transformation,[status(esa)],[f19]) ).

fof(f22,plain,
    ! [A] :
      ( ~ relation(A)
      | ( connected(A)
      <=> is_connected_in(A,relation_field(A)) ) ),
    inference(pre_NNF_transformation,[status(esa)],[f3]) ).

fof(f23,plain,
    ! [A] :
      ( ~ relation(A)
      | ( ( ~ connected(A)
          | is_connected_in(A,relation_field(A)) )
        & ( connected(A)
          | ~ is_connected_in(A,relation_field(A)) ) ) ),
    inference(NNF_transformation,[status(esa)],[f22]) ).

fof(f24,plain,
    ! [X0] :
      ( ~ relation(X0)
      | ~ connected(X0)
      | is_connected_in(X0,relation_field(X0)) ),
    inference(cnf_transformation,[status(esa)],[f23]) ).

fof(f25,plain,
    ! [X0] :
      ( ~ relation(X0)
      | connected(X0)
      | ~ is_connected_in(X0,relation_field(X0)) ),
    inference(cnf_transformation,[status(esa)],[f23]) ).

fof(f26,plain,
    ! [A] :
      ( ~ relation(A)
      | ( transitive(A)
      <=> is_transitive_in(A,relation_field(A)) ) ),
    inference(pre_NNF_transformation,[status(esa)],[f4]) ).

fof(f27,plain,
    ! [A] :
      ( ~ relation(A)
      | ( ( ~ transitive(A)
          | is_transitive_in(A,relation_field(A)) )
        & ( transitive(A)
          | ~ is_transitive_in(A,relation_field(A)) ) ) ),
    inference(NNF_transformation,[status(esa)],[f26]) ).

fof(f28,plain,
    ! [X0] :
      ( ~ relation(X0)
      | ~ transitive(X0)
      | is_transitive_in(X0,relation_field(X0)) ),
    inference(cnf_transformation,[status(esa)],[f27]) ).

fof(f29,plain,
    ! [X0] :
      ( ~ relation(X0)
      | transitive(X0)
      | ~ is_transitive_in(X0,relation_field(X0)) ),
    inference(cnf_transformation,[status(esa)],[f27]) ).

fof(f30,plain,
    ! [A] :
      ( ~ relation(A)
      | ( well_ordering(A)
      <=> ( reflexive(A)
          & transitive(A)
          & antisymmetric(A)
          & connected(A)
          & well_founded_relation(A) ) ) ),
    inference(pre_NNF_transformation,[status(esa)],[f5]) ).

fof(f31,plain,
    ! [A] :
      ( ~ relation(A)
      | ( ( ~ well_ordering(A)
          | ( reflexive(A)
            & transitive(A)
            & antisymmetric(A)
            & connected(A)
            & well_founded_relation(A) ) )
        & ( well_ordering(A)
          | ~ reflexive(A)
          | ~ transitive(A)
          | ~ antisymmetric(A)
          | ~ connected(A)
          | ~ well_founded_relation(A) ) ) ),
    inference(NNF_transformation,[status(esa)],[f30]) ).

fof(f32,plain,
    ! [X0] :
      ( ~ relation(X0)
      | ~ well_ordering(X0)
      | reflexive(X0) ),
    inference(cnf_transformation,[status(esa)],[f31]) ).

fof(f33,plain,
    ! [X0] :
      ( ~ relation(X0)
      | ~ well_ordering(X0)
      | transitive(X0) ),
    inference(cnf_transformation,[status(esa)],[f31]) ).

fof(f34,plain,
    ! [X0] :
      ( ~ relation(X0)
      | ~ well_ordering(X0)
      | antisymmetric(X0) ),
    inference(cnf_transformation,[status(esa)],[f31]) ).

fof(f35,plain,
    ! [X0] :
      ( ~ relation(X0)
      | ~ well_ordering(X0)
      | connected(X0) ),
    inference(cnf_transformation,[status(esa)],[f31]) ).

fof(f36,plain,
    ! [X0] :
      ( ~ relation(X0)
      | ~ well_ordering(X0)
      | well_founded_relation(X0) ),
    inference(cnf_transformation,[status(esa)],[f31]) ).

fof(f37,plain,
    ! [X0] :
      ( ~ relation(X0)
      | well_ordering(X0)
      | ~ reflexive(X0)
      | ~ transitive(X0)
      | ~ antisymmetric(X0)
      | ~ connected(X0)
      | ~ well_founded_relation(X0) ),
    inference(cnf_transformation,[status(esa)],[f31]) ).

fof(f38,plain,
    ! [A] :
      ( ~ relation(A)
      | ! [B] :
          ( well_orders(A,B)
        <=> ( is_reflexive_in(A,B)
            & is_transitive_in(A,B)
            & is_antisymmetric_in(A,B)
            & is_connected_in(A,B)
            & is_well_founded_in(A,B) ) ) ),
    inference(pre_NNF_transformation,[status(esa)],[f6]) ).

fof(f39,plain,
    ! [A] :
      ( ~ relation(A)
      | ! [B] :
          ( ( ~ well_orders(A,B)
            | ( is_reflexive_in(A,B)
              & is_transitive_in(A,B)
              & is_antisymmetric_in(A,B)
              & is_connected_in(A,B)
              & is_well_founded_in(A,B) ) )
          & ( well_orders(A,B)
            | ~ is_reflexive_in(A,B)
            | ~ is_transitive_in(A,B)
            | ~ is_antisymmetric_in(A,B)
            | ~ is_connected_in(A,B)
            | ~ is_well_founded_in(A,B) ) ) ),
    inference(NNF_transformation,[status(esa)],[f38]) ).

fof(f40,plain,
    ! [A] :
      ( ~ relation(A)
      | ( ! [B] :
            ( ~ well_orders(A,B)
            | ( is_reflexive_in(A,B)
              & is_transitive_in(A,B)
              & is_antisymmetric_in(A,B)
              & is_connected_in(A,B)
              & is_well_founded_in(A,B) ) )
        & ! [B] :
            ( well_orders(A,B)
            | ~ is_reflexive_in(A,B)
            | ~ is_transitive_in(A,B)
            | ~ is_antisymmetric_in(A,B)
            | ~ is_connected_in(A,B)
            | ~ is_well_founded_in(A,B) ) ) ),
    inference(miniscoping,[status(esa)],[f39]) ).

fof(f41,plain,
    ! [X0,X1] :
      ( ~ relation(X0)
      | ~ well_orders(X0,X1)
      | is_reflexive_in(X0,X1) ),
    inference(cnf_transformation,[status(esa)],[f40]) ).

fof(f42,plain,
    ! [X0,X1] :
      ( ~ relation(X0)
      | ~ well_orders(X0,X1)
      | is_transitive_in(X0,X1) ),
    inference(cnf_transformation,[status(esa)],[f40]) ).

fof(f43,plain,
    ! [X0,X1] :
      ( ~ relation(X0)
      | ~ well_orders(X0,X1)
      | is_antisymmetric_in(X0,X1) ),
    inference(cnf_transformation,[status(esa)],[f40]) ).

fof(f44,plain,
    ! [X0,X1] :
      ( ~ relation(X0)
      | ~ well_orders(X0,X1)
      | is_connected_in(X0,X1) ),
    inference(cnf_transformation,[status(esa)],[f40]) ).

fof(f45,plain,
    ! [X0,X1] :
      ( ~ relation(X0)
      | ~ well_orders(X0,X1)
      | is_well_founded_in(X0,X1) ),
    inference(cnf_transformation,[status(esa)],[f40]) ).

fof(f46,plain,
    ! [X0,X1] :
      ( ~ relation(X0)
      | well_orders(X0,X1)
      | ~ is_reflexive_in(X0,X1)
      | ~ is_transitive_in(X0,X1)
      | ~ is_antisymmetric_in(X0,X1)
      | ~ is_connected_in(X0,X1)
      | ~ is_well_founded_in(X0,X1) ),
    inference(cnf_transformation,[status(esa)],[f40]) ).

fof(f49,plain,
    ! [A] :
      ( ~ relation(A)
      | ( reflexive(A)
      <=> is_reflexive_in(A,relation_field(A)) ) ),
    inference(pre_NNF_transformation,[status(esa)],[f8]) ).

fof(f50,plain,
    ! [A] :
      ( ~ relation(A)
      | ( ( ~ reflexive(A)
          | is_reflexive_in(A,relation_field(A)) )
        & ( reflexive(A)
          | ~ is_reflexive_in(A,relation_field(A)) ) ) ),
    inference(NNF_transformation,[status(esa)],[f49]) ).

fof(f51,plain,
    ! [X0] :
      ( ~ relation(X0)
      | ~ reflexive(X0)
      | is_reflexive_in(X0,relation_field(X0)) ),
    inference(cnf_transformation,[status(esa)],[f50]) ).

fof(f52,plain,
    ! [X0] :
      ( ~ relation(X0)
      | reflexive(X0)
      | ~ is_reflexive_in(X0,relation_field(X0)) ),
    inference(cnf_transformation,[status(esa)],[f50]) ).

fof(f55,plain,
    ! [A] :
      ( ~ relation(A)
      | ( well_founded_relation(A)
      <=> is_well_founded_in(A,relation_field(A)) ) ),
    inference(pre_NNF_transformation,[status(esa)],[f14]) ).

fof(f56,plain,
    ! [A] :
      ( ~ relation(A)
      | ( ( ~ well_founded_relation(A)
          | is_well_founded_in(A,relation_field(A)) )
        & ( well_founded_relation(A)
          | ~ is_well_founded_in(A,relation_field(A)) ) ) ),
    inference(NNF_transformation,[status(esa)],[f55]) ).

fof(f57,plain,
    ! [X0] :
      ( ~ relation(X0)
      | ~ well_founded_relation(X0)
      | is_well_founded_in(X0,relation_field(X0)) ),
    inference(cnf_transformation,[status(esa)],[f56]) ).

fof(f58,plain,
    ! [X0] :
      ( ~ relation(X0)
      | well_founded_relation(X0)
      | ~ is_well_founded_in(X0,relation_field(X0)) ),
    inference(cnf_transformation,[status(esa)],[f56]) ).

fof(f59,plain,
    ? [A] :
      ( relation(A)
      & ( well_orders(A,relation_field(A))
      <~> well_ordering(A) ) ),
    inference(pre_NNF_transformation,[status(esa)],[f16]) ).

fof(f60,plain,
    ? [A] :
      ( relation(A)
      & ( well_orders(A,relation_field(A))
        | well_ordering(A) )
      & ( ~ well_orders(A,relation_field(A))
        | ~ well_ordering(A) ) ),
    inference(NNF_transformation,[status(esa)],[f59]) ).

fof(f61,plain,
    ( relation(sk0_0)
    & ( well_orders(sk0_0,relation_field(sk0_0))
      | well_ordering(sk0_0) )
    & ( ~ well_orders(sk0_0,relation_field(sk0_0))
      | ~ well_ordering(sk0_0) ) ),
    inference(skolemization,[status(esa)],[f60]) ).

fof(f62,plain,
    relation(sk0_0),
    inference(cnf_transformation,[status(esa)],[f61]) ).

fof(f63,plain,
    ( well_orders(sk0_0,relation_field(sk0_0))
    | well_ordering(sk0_0) ),
    inference(cnf_transformation,[status(esa)],[f61]) ).

fof(f64,plain,
    ( ~ well_orders(sk0_0,relation_field(sk0_0))
    | ~ well_ordering(sk0_0) ),
    inference(cnf_transformation,[status(esa)],[f61]) ).

fof(f65,plain,
    ( spl0_0
  <=> well_orders(sk0_0,relation_field(sk0_0)) ),
    introduced(split_symbol_definition) ).

fof(f66,plain,
    ( well_orders(sk0_0,relation_field(sk0_0))
    | ~ spl0_0 ),
    inference(component_clause,[status(thm)],[f65]) ).

fof(f68,plain,
    ( spl0_1
  <=> well_ordering(sk0_0) ),
    introduced(split_symbol_definition) ).

fof(f69,plain,
    ( well_ordering(sk0_0)
    | ~ spl0_1 ),
    inference(component_clause,[status(thm)],[f68]) ).

fof(f71,plain,
    ( spl0_0
    | spl0_1 ),
    inference(split_clause,[status(thm)],[f63,f65,f68]) ).

fof(f72,plain,
    ( ~ spl0_0
    | ~ spl0_1 ),
    inference(split_clause,[status(thm)],[f64,f65,f68]) ).

fof(f73,plain,
    ( spl0_2
  <=> reflexive(sk0_0) ),
    introduced(split_symbol_definition) ).

fof(f75,plain,
    ( ~ reflexive(sk0_0)
    | spl0_2 ),
    inference(component_clause,[status(thm)],[f73]) ).

fof(f76,plain,
    ( spl0_3
  <=> is_reflexive_in(sk0_0,relation_field(sk0_0)) ),
    introduced(split_symbol_definition) ).

fof(f78,plain,
    ( ~ is_reflexive_in(sk0_0,relation_field(sk0_0))
    | spl0_3 ),
    inference(component_clause,[status(thm)],[f76]) ).

fof(f79,plain,
    ( reflexive(sk0_0)
    | ~ is_reflexive_in(sk0_0,relation_field(sk0_0)) ),
    inference(resolution,[status(thm)],[f52,f62]) ).

fof(f80,plain,
    ( spl0_2
    | ~ spl0_3 ),
    inference(split_clause,[status(thm)],[f79,f73,f76]) ).

fof(f81,plain,
    ( spl0_4
  <=> well_founded_relation(sk0_0) ),
    introduced(split_symbol_definition) ).

fof(f83,plain,
    ( ~ well_founded_relation(sk0_0)
    | spl0_4 ),
    inference(component_clause,[status(thm)],[f81]) ).

fof(f84,plain,
    ( spl0_5
  <=> is_well_founded_in(sk0_0,relation_field(sk0_0)) ),
    introduced(split_symbol_definition) ).

fof(f86,plain,
    ( ~ is_well_founded_in(sk0_0,relation_field(sk0_0))
    | spl0_5 ),
    inference(component_clause,[status(thm)],[f84]) ).

fof(f87,plain,
    ( well_founded_relation(sk0_0)
    | ~ is_well_founded_in(sk0_0,relation_field(sk0_0)) ),
    inference(resolution,[status(thm)],[f58,f62]) ).

fof(f88,plain,
    ( spl0_4
    | ~ spl0_5 ),
    inference(split_clause,[status(thm)],[f87,f81,f84]) ).

fof(f90,plain,
    ! [X0] :
      ( well_orders(sk0_0,X0)
      | ~ is_reflexive_in(sk0_0,X0)
      | ~ is_transitive_in(sk0_0,X0)
      | ~ is_antisymmetric_in(sk0_0,X0)
      | ~ is_connected_in(sk0_0,X0)
      | ~ is_well_founded_in(sk0_0,X0) ),
    inference(resolution,[status(thm)],[f46,f62]) ).

fof(f91,plain,
    ( spl0_6
  <=> is_antisymmetric_in(sk0_0,relation_field(sk0_0)) ),
    introduced(split_symbol_definition) ).

fof(f92,plain,
    ( is_antisymmetric_in(sk0_0,relation_field(sk0_0))
    | ~ spl0_6 ),
    inference(component_clause,[status(thm)],[f91]) ).

fof(f93,plain,
    ( ~ is_antisymmetric_in(sk0_0,relation_field(sk0_0))
    | spl0_6 ),
    inference(component_clause,[status(thm)],[f91]) ).

fof(f94,plain,
    ( spl0_7
  <=> is_connected_in(sk0_0,relation_field(sk0_0)) ),
    introduced(split_symbol_definition) ).

fof(f95,plain,
    ( is_connected_in(sk0_0,relation_field(sk0_0))
    | ~ spl0_7 ),
    inference(component_clause,[status(thm)],[f94]) ).

fof(f96,plain,
    ( ~ is_connected_in(sk0_0,relation_field(sk0_0))
    | spl0_7 ),
    inference(component_clause,[status(thm)],[f94]) ).

fof(f97,plain,
    ( spl0_8
  <=> relation(sk0_0) ),
    introduced(split_symbol_definition) ).

fof(f99,plain,
    ( ~ relation(sk0_0)
    | spl0_8 ),
    inference(component_clause,[status(thm)],[f97]) ).

fof(f100,plain,
    ( spl0_9
  <=> transitive(sk0_0) ),
    introduced(split_symbol_definition) ).

fof(f101,plain,
    ( transitive(sk0_0)
    | ~ spl0_9 ),
    inference(component_clause,[status(thm)],[f100]) ).

fof(f103,plain,
    ( well_orders(sk0_0,relation_field(sk0_0))
    | ~ is_reflexive_in(sk0_0,relation_field(sk0_0))
    | ~ is_antisymmetric_in(sk0_0,relation_field(sk0_0))
    | ~ is_connected_in(sk0_0,relation_field(sk0_0))
    | ~ is_well_founded_in(sk0_0,relation_field(sk0_0))
    | ~ relation(sk0_0)
    | ~ transitive(sk0_0) ),
    inference(resolution,[status(thm)],[f90,f28]) ).

fof(f104,plain,
    ( spl0_0
    | ~ spl0_3
    | ~ spl0_6
    | ~ spl0_7
    | ~ spl0_5
    | ~ spl0_8
    | ~ spl0_9 ),
    inference(split_clause,[status(thm)],[f103,f65,f76,f91,f94,f84,f97,f100]) ).

fof(f105,plain,
    ( ~ relation(sk0_0)
    | ~ reflexive(sk0_0)
    | spl0_3 ),
    inference(resolution,[status(thm)],[f78,f51]) ).

fof(f106,plain,
    ( ~ spl0_8
    | ~ spl0_2
    | spl0_3 ),
    inference(split_clause,[status(thm)],[f105,f97,f73,f76]) ).

fof(f107,plain,
    ( ~ relation(sk0_0)
    | ~ well_orders(sk0_0,relation_field(sk0_0))
    | spl0_3 ),
    inference(resolution,[status(thm)],[f78,f41]) ).

fof(f108,plain,
    ( ~ spl0_8
    | ~ spl0_0
    | spl0_3 ),
    inference(split_clause,[status(thm)],[f107,f97,f65,f76]) ).

fof(f109,plain,
    ( $false
    | spl0_8 ),
    inference(forward_subsumption_resolution,[status(thm)],[f99,f62]) ).

fof(f110,plain,
    spl0_8,
    inference(contradiction_clause,[status(thm)],[f109]) ).

fof(f111,plain,
    ( ~ relation(sk0_0)
    | ~ well_ordering(sk0_0)
    | spl0_2 ),
    inference(resolution,[status(thm)],[f75,f32]) ).

fof(f112,plain,
    ( ~ spl0_8
    | ~ spl0_1
    | spl0_2 ),
    inference(split_clause,[status(thm)],[f111,f97,f68,f73]) ).

fof(f113,plain,
    ( spl0_10
  <=> connected(sk0_0) ),
    introduced(split_symbol_definition) ).

fof(f116,plain,
    ( ~ relation(sk0_0)
    | connected(sk0_0)
    | ~ spl0_1 ),
    inference(resolution,[status(thm)],[f69,f35]) ).

fof(f117,plain,
    ( ~ spl0_8
    | spl0_10
    | ~ spl0_1 ),
    inference(split_clause,[status(thm)],[f116,f97,f113,f68]) ).

fof(f118,plain,
    ( spl0_11
  <=> antisymmetric(sk0_0) ),
    introduced(split_symbol_definition) ).

fof(f121,plain,
    ( ~ relation(sk0_0)
    | antisymmetric(sk0_0)
    | ~ spl0_1 ),
    inference(resolution,[status(thm)],[f69,f34]) ).

fof(f122,plain,
    ( ~ spl0_8
    | spl0_11
    | ~ spl0_1 ),
    inference(split_clause,[status(thm)],[f121,f97,f118,f68]) ).

fof(f123,plain,
    ( ~ relation(sk0_0)
    | transitive(sk0_0)
    | ~ spl0_1 ),
    inference(resolution,[status(thm)],[f69,f33]) ).

fof(f124,plain,
    ( ~ spl0_8
    | spl0_9
    | ~ spl0_1 ),
    inference(split_clause,[status(thm)],[f123,f97,f100,f68]) ).

fof(f125,plain,
    ( ~ relation(sk0_0)
    | ~ well_founded_relation(sk0_0)
    | spl0_5 ),
    inference(resolution,[status(thm)],[f86,f57]) ).

fof(f126,plain,
    ( ~ spl0_8
    | ~ spl0_4
    | spl0_5 ),
    inference(split_clause,[status(thm)],[f125,f97,f81,f84]) ).

fof(f127,plain,
    ( ~ relation(sk0_0)
    | ~ well_orders(sk0_0,relation_field(sk0_0))
    | spl0_5 ),
    inference(resolution,[status(thm)],[f86,f45]) ).

fof(f128,plain,
    ( ~ spl0_8
    | ~ spl0_0
    | spl0_5 ),
    inference(split_clause,[status(thm)],[f127,f97,f65,f84]) ).

fof(f129,plain,
    ( ~ relation(sk0_0)
    | is_connected_in(sk0_0,relation_field(sk0_0))
    | ~ spl0_0 ),
    inference(resolution,[status(thm)],[f66,f44]) ).

fof(f130,plain,
    ( ~ spl0_8
    | spl0_7
    | ~ spl0_0 ),
    inference(split_clause,[status(thm)],[f129,f97,f94,f65]) ).

fof(f131,plain,
    ( ~ relation(sk0_0)
    | is_antisymmetric_in(sk0_0,relation_field(sk0_0))
    | ~ spl0_0 ),
    inference(resolution,[status(thm)],[f66,f43]) ).

fof(f132,plain,
    ( ~ spl0_8
    | spl0_6
    | ~ spl0_0 ),
    inference(split_clause,[status(thm)],[f131,f97,f91,f65]) ).

fof(f133,plain,
    ( spl0_12
  <=> is_transitive_in(sk0_0,relation_field(sk0_0)) ),
    introduced(split_symbol_definition) ).

fof(f134,plain,
    ( is_transitive_in(sk0_0,relation_field(sk0_0))
    | ~ spl0_12 ),
    inference(component_clause,[status(thm)],[f133]) ).

fof(f136,plain,
    ( ~ relation(sk0_0)
    | is_transitive_in(sk0_0,relation_field(sk0_0))
    | ~ spl0_0 ),
    inference(resolution,[status(thm)],[f66,f42]) ).

fof(f137,plain,
    ( ~ spl0_8
    | spl0_12
    | ~ spl0_0 ),
    inference(split_clause,[status(thm)],[f136,f97,f133,f65]) ).

fof(f140,plain,
    ( ~ relation(sk0_0)
    | transitive(sk0_0)
    | ~ spl0_12 ),
    inference(resolution,[status(thm)],[f134,f29]) ).

fof(f141,plain,
    ( ~ spl0_8
    | spl0_9
    | ~ spl0_12 ),
    inference(split_clause,[status(thm)],[f140,f97,f100,f133]) ).

fof(f142,plain,
    ( ~ relation(sk0_0)
    | connected(sk0_0)
    | ~ spl0_7 ),
    inference(resolution,[status(thm)],[f95,f25]) ).

fof(f143,plain,
    ( ~ spl0_8
    | spl0_10
    | ~ spl0_7 ),
    inference(split_clause,[status(thm)],[f142,f97,f113,f94]) ).

fof(f144,plain,
    ( ~ relation(sk0_0)
    | well_ordering(sk0_0)
    | ~ reflexive(sk0_0)
    | ~ antisymmetric(sk0_0)
    | ~ connected(sk0_0)
    | ~ well_founded_relation(sk0_0)
    | ~ spl0_9 ),
    inference(resolution,[status(thm)],[f101,f37]) ).

fof(f145,plain,
    ( ~ spl0_8
    | spl0_1
    | ~ spl0_2
    | ~ spl0_11
    | ~ spl0_10
    | ~ spl0_4
    | ~ spl0_9 ),
    inference(split_clause,[status(thm)],[f144,f97,f68,f73,f118,f113,f81,f100]) ).

fof(f146,plain,
    ( ~ relation(sk0_0)
    | antisymmetric(sk0_0)
    | ~ spl0_6 ),
    inference(resolution,[status(thm)],[f92,f21]) ).

fof(f147,plain,
    ( ~ spl0_8
    | spl0_11
    | ~ spl0_6 ),
    inference(split_clause,[status(thm)],[f146,f97,f118,f91]) ).

fof(f154,plain,
    ( ~ relation(sk0_0)
    | ~ antisymmetric(sk0_0)
    | spl0_6 ),
    inference(resolution,[status(thm)],[f93,f20]) ).

fof(f155,plain,
    ( ~ spl0_8
    | ~ spl0_11
    | spl0_6 ),
    inference(split_clause,[status(thm)],[f154,f97,f118,f91]) ).

fof(f156,plain,
    ( ~ relation(sk0_0)
    | ~ well_ordering(sk0_0)
    | spl0_4 ),
    inference(resolution,[status(thm)],[f83,f36]) ).

fof(f157,plain,
    ( ~ spl0_8
    | ~ spl0_1
    | spl0_4 ),
    inference(split_clause,[status(thm)],[f156,f97,f68,f81]) ).

fof(f160,plain,
    ( ~ relation(sk0_0)
    | ~ connected(sk0_0)
    | spl0_7 ),
    inference(resolution,[status(thm)],[f96,f24]) ).

fof(f161,plain,
    ( ~ spl0_8
    | ~ spl0_10
    | spl0_7 ),
    inference(split_clause,[status(thm)],[f160,f97,f113,f94]) ).

fof(f162,plain,
    $false,
    inference(sat_refutation,[status(thm)],[f71,f72,f80,f88,f104,f106,f108,f110,f112,f117,f122,f124,f126,f128,f130,f132,f137,f141,f143,f145,f147,f155,f157,f161]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : SEU244+1 : TPTP v8.1.2. Released v3.3.0.
% 0.07/0.13  % Command  : drodi -learnfrom(drodi.lrn) -timeout(%d) %s
% 0.14/0.35  % Computer : n011.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 300
% 0.14/0.35  % DateTime : Tue May 30 09:18:12 EDT 2023
% 0.14/0.35  % CPUTime  : 
% 0.14/0.36  % Drodi V3.5.1
% 0.14/0.37  % Refutation found
% 0.14/0.37  % SZS status Theorem for theBenchmark: Theorem is valid
% 0.14/0.37  % SZS output start CNFRefutation for theBenchmark
% See solution above
% 0.21/0.58  % Elapsed time: 0.018539 seconds
% 0.21/0.58  % CPU time: 0.039326 seconds
% 0.21/0.58  % Memory used: 14.504 MB
%------------------------------------------------------------------------------