TSTP Solution File: SEU238+3 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SEU238+3 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 08:48:02 EDT 2022

% Result   : Theorem 4.19s 1.67s
% Output   : Proof 6.84s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : SEU238+3 : TPTP v8.1.0. Released v3.2.0.
% 0.03/0.12  % Command  : ePrincess-casc -timeout=%d %s
% 0.11/0.32  % Computer : n003.cluster.edu
% 0.11/0.32  % Model    : x86_64 x86_64
% 0.11/0.32  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.32  % Memory   : 8042.1875MB
% 0.11/0.32  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.32  % CPULimit : 300
% 0.11/0.32  % WCLimit  : 600
% 0.11/0.32  % DateTime : Sun Jun 19 09:33:28 EDT 2022
% 0.11/0.32  % CPUTime  : 
% 0.55/0.56          ____       _                          
% 0.55/0.56    ___  / __ \_____(_)___  ________  __________
% 0.55/0.56   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.55/0.56  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.55/0.56  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.55/0.56  
% 0.55/0.56  A Theorem Prover for First-Order Logic
% 0.55/0.56  (ePrincess v.1.0)
% 0.55/0.56  
% 0.55/0.56  (c) Philipp Rümmer, 2009-2015
% 0.55/0.56  (c) Peter Backeman, 2014-2015
% 0.55/0.57  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.55/0.57  Free software under GNU Lesser General Public License (LGPL).
% 0.55/0.57  Bug reports to peter@backeman.se
% 0.55/0.57  
% 0.55/0.57  For more information, visit http://user.uu.se/~petba168/breu/
% 0.55/0.57  
% 0.55/0.57  Loading /export/starexec/sandbox2/benchmark/theBenchmark.p ...
% 0.55/0.61  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.63/0.94  Prover 0: Preprocessing ...
% 2.31/1.19  Prover 0: Warning: ignoring some quantifiers
% 2.31/1.21  Prover 0: Constructing countermodel ...
% 4.19/1.67  Prover 0: proved (1050ms)
% 4.19/1.67  
% 4.19/1.67  No countermodel exists, formula is valid
% 4.19/1.67  % SZS status Theorem for theBenchmark
% 4.19/1.67  
% 4.19/1.67  Generating proof ... Warning: ignoring some quantifiers
% 6.43/2.21  found it (size 41)
% 6.43/2.21  
% 6.43/2.21  % SZS output start Proof for theBenchmark
% 6.43/2.21  Assumed formulas after preprocessing and simplification: 
% 6.43/2.21  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] :  ? [v8] :  ? [v9] :  ? [v10] :  ? [v11] :  ? [v12] :  ? [v13] :  ? [v14] :  ? [v15] : (relation_non_empty(v3) & relation_empty_yielding(v5) & relation_empty_yielding(v4) & relation_empty_yielding(empty_set) & one_to_one(v10) & one_to_one(v7) & one_to_one(empty_set) & relation(v15) & relation(v13) & relation(v11) & relation(v10) & relation(v9) & relation(v7) & relation(v5) & relation(v4) & relation(v3) & relation(empty_set) & epsilon_connected(v14) & epsilon_connected(v10) & epsilon_connected(v6) & epsilon_connected(empty_set) & epsilon_transitive(v14) & epsilon_transitive(v10) & epsilon_transitive(v6) & epsilon_transitive(empty_set) & ordinal(v14) & ordinal(v10) & ordinal(v6) & ordinal(v0) & ordinal(empty_set) & function(v15) & function(v11) & function(v10) & function(v7) & function(v4) & function(v3) & function(empty_set) & empty(v13) & empty(v12) & empty(v11) & empty(v10) & empty(empty_set) &  ~ empty(v9) &  ~ empty(v8) &  ~ empty(v6) &  ! [v16] :  ! [v17] :  ! [v18] :  ! [v19] : (v17 = v16 |  ~ (set_union2(v19, v18) = v17) |  ~ (set_union2(v19, v18) = v16)) &  ! [v16] :  ! [v17] :  ! [v18] :  ! [v19] : ( ~ (powerset(v18) = v19) |  ~ element(v17, v19) |  ~ empty(v18) |  ~ in(v16, v17)) &  ! [v16] :  ! [v17] :  ! [v18] :  ! [v19] : ( ~ (powerset(v18) = v19) |  ~ element(v17, v19) |  ~ in(v16, v17) | element(v16, v18)) &  ! [v16] :  ! [v17] :  ! [v18] : (v17 = v16 |  ~ (powerset(v18) = v17) |  ~ (powerset(v18) = v16)) &  ! [v16] :  ! [v17] :  ! [v18] : (v17 = v16 |  ~ (singleton(v18) = v17) |  ~ (singleton(v18) = v16)) &  ! [v16] :  ! [v17] :  ! [v18] : (v17 = v16 |  ~ (succ(v18) = v17) |  ~ (succ(v18) = v16)) &  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (powerset(v17) = v18) |  ~ element(v16, v18) | subset(v16, v17)) &  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (powerset(v17) = v18) |  ~ subset(v16, v17) | element(v16, v18)) &  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (singleton(v16) = v17) |  ~ (set_union2(v16, v17) = v18) | succ(v16) = v18) &  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (succ(v17) = v18) |  ~ being_limit_ordinal(v16) |  ~ ordinal(v17) |  ~ ordinal(v16) |  ~ in(v17, v16) | in(v18, v16)) &  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (succ(v16) = v17) |  ~ ordinal_subset(v17, v18) |  ~ ordinal(v18) |  ~ ordinal(v16) | in(v16, v18)) &  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (succ(v16) = v17) |  ~ ordinal(v18) |  ~ ordinal(v16) |  ~ in(v16, v18) | ordinal_subset(v17, v18)) &  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (set_union2(v17, v16) = v18) |  ~ empty(v18) | empty(v16)) &  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (set_union2(v17, v16) = v18) | set_union2(v16, v17) = v18) &  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (set_union2(v16, v17) = v18) |  ~ relation(v17) |  ~ relation(v16) | relation(v18)) &  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (set_union2(v16, v17) = v18) |  ~ empty(v18) | empty(v16)) &  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (set_union2(v16, v17) = v18) | set_union2(v17, v16) = v18) &  ! [v16] :  ! [v17] : (v17 = v16 |  ~ (set_union2(v16, v16) = v17)) &  ! [v16] :  ! [v17] : (v17 = v16 |  ~ (set_union2(v16, empty_set) = v17)) &  ! [v16] :  ! [v17] : (v17 = v16 |  ~ subset(v16, v17) | proper_subset(v16, v17)) &  ! [v16] :  ! [v17] : (v17 = v16 |  ~ empty(v17) |  ~ empty(v16)) &  ! [v16] :  ! [v17] : ( ~ (succ(v16) = v17) |  ~ ordinal(v16) |  ~ empty(v17)) &  ! [v16] :  ! [v17] : ( ~ (succ(v16) = v17) |  ~ ordinal(v16) | epsilon_connected(v17)) &  ! [v16] :  ! [v17] : ( ~ (succ(v16) = v17) |  ~ ordinal(v16) | epsilon_transitive(v17)) &  ! [v16] :  ! [v17] : ( ~ (succ(v16) = v17) |  ~ ordinal(v16) | ordinal(v17)) &  ! [v16] :  ! [v17] : ( ~ (succ(v16) = v17) |  ~ empty(v17)) &  ! [v16] :  ! [v17] : ( ~ (succ(v16) = v17) | in(v16, v17)) &  ! [v16] :  ! [v17] : ( ~ (succ(v16) = v17) |  ? [v18] : (singleton(v16) = v18 & set_union2(v16, v18) = v17)) &  ! [v16] :  ! [v17] : ( ~ element(v16, v17) | empty(v17) | in(v16, v17)) &  ! [v16] :  ! [v17] : ( ~ subset(v16, v17) |  ~ ordinal(v17) |  ~ ordinal(v16) | ordinal_subset(v16, v17)) &  ! [v16] :  ! [v17] : ( ~ ordinal_subset(v16, v17) |  ~ ordinal(v17) |  ~ ordinal(v16) | subset(v16, v17)) &  ! [v16] :  ! [v17] : ( ~ epsilon_transitive(v16) |  ~ ordinal(v17) |  ~ proper_subset(v16, v17) | in(v16, v17)) &  ! [v16] :  ! [v17] : ( ~ ordinal(v17) |  ~ ordinal(v16) | ordinal_subset(v17, v16) | ordinal_subset(v16, v17)) &  ! [v16] :  ! [v17] : ( ~ ordinal(v17) |  ~ ordinal(v16) | ordinal_subset(v16, v16)) &  ! [v16] :  ! [v17] : ( ~ empty(v17) |  ~ in(v16, v17)) &  ! [v16] :  ! [v17] : ( ~ proper_subset(v17, v16) |  ~ proper_subset(v16, v17)) &  ! [v16] :  ! [v17] : ( ~ proper_subset(v16, v17) | subset(v16, v17)) &  ! [v16] :  ! [v17] : ( ~ in(v17, v16) |  ~ in(v16, v17)) &  ! [v16] :  ! [v17] : ( ~ in(v16, v17) | element(v16, v17)) &  ! [v16] : (v16 = empty_set |  ~ empty(v16)) &  ! [v16] : ( ~ relation(v16) |  ~ function(v16) |  ~ empty(v16) | one_to_one(v16)) &  ! [v16] : ( ~ epsilon_connected(v16) |  ~ epsilon_transitive(v16) | ordinal(v16)) &  ! [v16] : ( ~ ordinal(v16) | being_limit_ordinal(v16) |  ? [v17] :  ? [v18] : (succ(v17) = v18 & ordinal(v17) & in(v17, v16) &  ~ in(v18, v16))) &  ! [v16] : ( ~ ordinal(v16) | epsilon_connected(v16)) &  ! [v16] : ( ~ ordinal(v16) | epsilon_transitive(v16)) &  ! [v16] : ( ~ empty(v16) | relation(v16)) &  ! [v16] : ( ~ empty(v16) | epsilon_connected(v16)) &  ! [v16] : ( ~ empty(v16) | epsilon_transitive(v16)) &  ! [v16] : ( ~ empty(v16) | ordinal(v16)) &  ! [v16] : ( ~ empty(v16) | function(v16)) &  ! [v16] :  ~ proper_subset(v16, v16) &  ? [v16] :  ? [v17] : element(v17, v16) &  ? [v16] : subset(v16, v16) & ((v2 = v0 & succ(v1) = v0 & being_limit_ordinal(v0) & ordinal(v1)) | ( ~ being_limit_ordinal(v0) &  ! [v16] : ( ~ ordinal(v16) |  ? [v17] : ( ~ (v17 = v0) & succ(v16) = v17)))))
% 6.84/2.25  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9, all_0_10_10, all_0_11_11, all_0_12_12, all_0_13_13, all_0_14_14, all_0_15_15 yields:
% 6.84/2.25  | (1) relation_non_empty(all_0_12_12) & relation_empty_yielding(all_0_10_10) & relation_empty_yielding(all_0_11_11) & relation_empty_yielding(empty_set) & one_to_one(all_0_5_5) & one_to_one(all_0_8_8) & one_to_one(empty_set) & relation(all_0_0_0) & relation(all_0_2_2) & relation(all_0_4_4) & relation(all_0_5_5) & relation(all_0_6_6) & relation(all_0_8_8) & relation(all_0_10_10) & relation(all_0_11_11) & relation(all_0_12_12) & relation(empty_set) & epsilon_connected(all_0_1_1) & epsilon_connected(all_0_5_5) & epsilon_connected(all_0_9_9) & epsilon_connected(empty_set) & epsilon_transitive(all_0_1_1) & epsilon_transitive(all_0_5_5) & epsilon_transitive(all_0_9_9) & epsilon_transitive(empty_set) & ordinal(all_0_1_1) & ordinal(all_0_5_5) & ordinal(all_0_9_9) & ordinal(all_0_15_15) & ordinal(empty_set) & function(all_0_0_0) & function(all_0_4_4) & function(all_0_5_5) & function(all_0_8_8) & function(all_0_11_11) & function(all_0_12_12) & function(empty_set) & empty(all_0_2_2) & empty(all_0_3_3) & empty(all_0_4_4) & empty(all_0_5_5) & empty(empty_set) &  ~ empty(all_0_6_6) &  ~ empty(all_0_7_7) &  ~ empty(all_0_9_9) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (set_union2(v3, v2) = v1) |  ~ (set_union2(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ empty(v2) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ in(v0, v1) | element(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (powerset(v2) = v1) |  ~ (powerset(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (succ(v2) = v1) |  ~ (succ(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ element(v0, v2) | subset(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ subset(v0, v1) | element(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (singleton(v0) = v1) |  ~ (set_union2(v0, v1) = v2) | succ(v0) = v2) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v1) = v2) |  ~ being_limit_ordinal(v0) |  ~ ordinal(v1) |  ~ ordinal(v0) |  ~ in(v1, v0) | in(v2, v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v0) = v1) |  ~ ordinal_subset(v1, v2) |  ~ ordinal(v2) |  ~ ordinal(v0) | in(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v0) = v1) |  ~ ordinal(v2) |  ~ ordinal(v0) |  ~ in(v0, v2) | ordinal_subset(v1, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v1, v0) = v2) |  ~ empty(v2) | empty(v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v1, v0) = v2) | set_union2(v0, v1) = v2) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) |  ~ relation(v1) |  ~ relation(v0) | relation(v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) |  ~ empty(v2) | empty(v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) | set_union2(v1, v0) = v2) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (set_union2(v0, v0) = v1)) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (set_union2(v0, empty_set) = v1)) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ subset(v0, v1) | proper_subset(v0, v1)) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ empty(v1) |  ~ empty(v0)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) |  ~ empty(v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | epsilon_connected(v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | epsilon_transitive(v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | ordinal(v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ empty(v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) | in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ? [v2] : (singleton(v0) = v2 & set_union2(v0, v2) = v1)) &  ! [v0] :  ! [v1] : ( ~ element(v0, v1) | empty(v1) | in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ subset(v0, v1) |  ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ ordinal_subset(v0, v1) |  ~ ordinal(v1) |  ~ ordinal(v0) | subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ epsilon_transitive(v0) |  ~ ordinal(v1) |  ~ proper_subset(v0, v1) | in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v1, v0) | ordinal_subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v0, v0)) &  ! [v0] :  ! [v1] : ( ~ empty(v1) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ proper_subset(v1, v0) |  ~ proper_subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ proper_subset(v0, v1) | subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ in(v1, v0) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ in(v0, v1) | element(v0, v1)) &  ! [v0] : (v0 = empty_set |  ~ empty(v0)) &  ! [v0] : ( ~ relation(v0) |  ~ function(v0) |  ~ empty(v0) | one_to_one(v0)) &  ! [v0] : ( ~ epsilon_connected(v0) |  ~ epsilon_transitive(v0) | ordinal(v0)) &  ! [v0] : ( ~ ordinal(v0) | being_limit_ordinal(v0) |  ? [v1] :  ? [v2] : (succ(v1) = v2 & ordinal(v1) & in(v1, v0) &  ~ in(v2, v0))) &  ! [v0] : ( ~ ordinal(v0) | epsilon_connected(v0)) &  ! [v0] : ( ~ ordinal(v0) | epsilon_transitive(v0)) &  ! [v0] : ( ~ empty(v0) | relation(v0)) &  ! [v0] : ( ~ empty(v0) | epsilon_connected(v0)) &  ! [v0] : ( ~ empty(v0) | epsilon_transitive(v0)) &  ! [v0] : ( ~ empty(v0) | ordinal(v0)) &  ! [v0] : ( ~ empty(v0) | function(v0)) &  ! [v0] :  ~ proper_subset(v0, v0) &  ? [v0] :  ? [v1] : element(v1, v0) &  ? [v0] : subset(v0, v0) & ((all_0_13_13 = all_0_15_15 & succ(all_0_14_14) = all_0_15_15 & being_limit_ordinal(all_0_15_15) & ordinal(all_0_14_14)) | ( ~ being_limit_ordinal(all_0_15_15) &  ! [v0] : ( ~ ordinal(v0) |  ? [v1] : ( ~ (v1 = all_0_15_15) & succ(v0) = v1))))
% 6.84/2.26  |
% 6.84/2.26  | Applying alpha-rule on (1) yields:
% 6.84/2.26  | (2) empty(all_0_2_2)
% 6.84/2.26  | (3)  ~ empty(all_0_6_6)
% 6.84/2.26  | (4) ordinal(all_0_15_15)
% 6.84/2.26  | (5)  ! [v0] : ( ~ relation(v0) |  ~ function(v0) |  ~ empty(v0) | one_to_one(v0))
% 6.84/2.26  | (6)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (succ(v2) = v1) |  ~ (succ(v2) = v0))
% 6.84/2.26  | (7) ordinal(all_0_1_1)
% 6.84/2.26  | (8) epsilon_transitive(all_0_5_5)
% 6.84/2.26  | (9) relation_non_empty(all_0_12_12)
% 6.84/2.26  | (10) function(all_0_11_11)
% 6.84/2.26  | (11)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 6.84/2.26  | (12)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) |  ~ empty(v1))
% 6.84/2.26  | (13)  ! [v0] :  ! [v1] : ( ~ proper_subset(v1, v0) |  ~ proper_subset(v0, v1))
% 6.84/2.26  | (14) (all_0_13_13 = all_0_15_15 & succ(all_0_14_14) = all_0_15_15 & being_limit_ordinal(all_0_15_15) & ordinal(all_0_14_14)) | ( ~ being_limit_ordinal(all_0_15_15) &  ! [v0] : ( ~ ordinal(v0) |  ? [v1] : ( ~ (v1 = all_0_15_15) & succ(v0) = v1)))
% 6.84/2.26  | (15) relation_empty_yielding(all_0_10_10)
% 6.84/2.26  | (16)  ? [v0] :  ? [v1] : element(v1, v0)
% 6.84/2.26  | (17)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v1, v0) = v2) |  ~ empty(v2) | empty(v0))
% 6.84/2.26  | (18)  ! [v0] :  ! [v1] : ( ~ subset(v0, v1) |  ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v0, v1))
% 6.84/2.26  | (19) epsilon_connected(all_0_5_5)
% 6.84/2.26  | (20)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (powerset(v2) = v1) |  ~ (powerset(v2) = v0))
% 6.84/2.26  | (21)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v1) = v2) |  ~ being_limit_ordinal(v0) |  ~ ordinal(v1) |  ~ ordinal(v0) |  ~ in(v1, v0) | in(v2, v0))
% 6.84/2.26  | (22)  ! [v0] : ( ~ empty(v0) | epsilon_transitive(v0))
% 6.84/2.26  | (23)  ! [v0] : ( ~ epsilon_connected(v0) |  ~ epsilon_transitive(v0) | ordinal(v0))
% 6.84/2.26  | (24) relation(all_0_11_11)
% 6.84/2.26  | (25) one_to_one(empty_set)
% 6.84/2.26  | (26) function(empty_set)
% 6.84/2.26  | (27) epsilon_connected(empty_set)
% 6.84/2.26  | (28) epsilon_transitive(all_0_9_9)
% 6.84/2.26  | (29) relation(all_0_10_10)
% 6.84/2.26  | (30)  ! [v0] :  ! [v1] : ( ~ in(v1, v0) |  ~ in(v0, v1))
% 6.84/2.26  | (31) relation_empty_yielding(all_0_11_11)
% 6.84/2.26  | (32)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | ordinal(v1))
% 6.84/2.26  | (33) empty(empty_set)
% 6.84/2.26  | (34)  ! [v0] :  ~ proper_subset(v0, v0)
% 6.84/2.26  | (35) empty(all_0_3_3)
% 6.84/2.27  | (36)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | epsilon_connected(v1))
% 6.84/2.27  | (37)  ! [v0] :  ! [v1] : ( ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v1, v0) | ordinal_subset(v0, v1))
% 6.84/2.27  | (38) empty(all_0_5_5)
% 6.84/2.27  | (39) relation(all_0_12_12)
% 6.84/2.27  | (40)  ? [v0] : subset(v0, v0)
% 6.84/2.27  | (41) ordinal(all_0_5_5)
% 6.84/2.27  | (42)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (set_union2(v3, v2) = v1) |  ~ (set_union2(v3, v2) = v0))
% 6.84/2.27  | (43)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) | in(v0, v1))
% 6.84/2.27  | (44)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (set_union2(v0, v0) = v1))
% 6.84/2.27  | (45)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) |  ~ empty(v2) | empty(v0))
% 6.84/2.27  | (46) relation(all_0_2_2)
% 6.84/2.27  | (47) relation(all_0_8_8)
% 6.84/2.27  | (48) function(all_0_5_5)
% 6.84/2.27  | (49) function(all_0_4_4)
% 6.84/2.27  | (50)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v0) = v1) |  ~ ordinal(v2) |  ~ ordinal(v0) |  ~ in(v0, v2) | ordinal_subset(v1, v2))
% 6.84/2.27  | (51)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) |  ~ relation(v1) |  ~ relation(v0) | relation(v2))
% 6.84/2.27  | (52) relation(empty_set)
% 6.84/2.27  | (53) epsilon_connected(all_0_9_9)
% 6.84/2.27  | (54)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ in(v0, v1) | element(v0, v2))
% 6.84/2.27  | (55) relation_empty_yielding(empty_set)
% 6.84/2.27  | (56)  ! [v0] :  ! [v1] : ( ~ empty(v1) |  ~ in(v0, v1))
% 6.84/2.27  | (57)  ! [v0] :  ! [v1] : ( ~ ordinal_subset(v0, v1) |  ~ ordinal(v1) |  ~ ordinal(v0) | subset(v0, v1))
% 6.84/2.27  | (58)  ! [v0] : ( ~ empty(v0) | epsilon_connected(v0))
% 6.84/2.27  | (59) epsilon_transitive(all_0_1_1)
% 6.84/2.27  | (60)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ subset(v0, v1) | element(v0, v2))
% 6.84/2.27  | (61)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ element(v0, v2) | subset(v0, v1))
% 6.84/2.27  | (62) one_to_one(all_0_8_8)
% 6.84/2.27  | (63) relation(all_0_4_4)
% 6.84/2.27  | (64) ordinal(all_0_9_9)
% 6.84/2.27  | (65)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ subset(v0, v1) | proper_subset(v0, v1))
% 6.84/2.27  | (66)  ! [v0] : ( ~ empty(v0) | function(v0))
% 6.84/2.27  | (67)  ! [v0] :  ! [v1] : ( ~ epsilon_transitive(v0) |  ~ ordinal(v1) |  ~ proper_subset(v0, v1) | in(v0, v1))
% 6.84/2.27  | (68)  ~ empty(all_0_9_9)
% 6.84/2.27  | (69)  ! [v0] : ( ~ empty(v0) | relation(v0))
% 6.84/2.27  | (70)  ! [v0] :  ! [v1] : ( ~ proper_subset(v0, v1) | subset(v0, v1))
% 6.84/2.27  | (71)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ empty(v2) |  ~ in(v0, v1))
% 6.84/2.27  | (72) relation(all_0_0_0)
% 6.84/2.27  | (73) empty(all_0_4_4)
% 6.84/2.27  | (74)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) | set_union2(v1, v0) = v2)
% 6.84/2.27  | (75)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v1, v0) = v2) | set_union2(v0, v1) = v2)
% 6.84/2.27  | (76)  ! [v0] : ( ~ ordinal(v0) | epsilon_connected(v0))
% 6.84/2.27  | (77)  ~ empty(all_0_7_7)
% 6.84/2.27  | (78)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | epsilon_transitive(v1))
% 6.84/2.27  | (79)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (set_union2(v0, empty_set) = v1))
% 6.84/2.27  | (80) ordinal(empty_set)
% 6.84/2.27  | (81) relation(all_0_5_5)
% 6.84/2.27  | (82) epsilon_transitive(empty_set)
% 6.84/2.27  | (83)  ! [v0] : ( ~ ordinal(v0) | epsilon_transitive(v0))
% 6.84/2.27  | (84)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (singleton(v0) = v1) |  ~ (set_union2(v0, v1) = v2) | succ(v0) = v2)
% 6.84/2.27  | (85) function(all_0_8_8)
% 6.84/2.27  | (86) one_to_one(all_0_5_5)
% 6.84/2.27  | (87) function(all_0_12_12)
% 6.84/2.27  | (88)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ? [v2] : (singleton(v0) = v2 & set_union2(v0, v2) = v1))
% 6.84/2.27  | (89)  ! [v0] : ( ~ ordinal(v0) | being_limit_ordinal(v0) |  ? [v1] :  ? [v2] : (succ(v1) = v2 & ordinal(v1) & in(v1, v0) &  ~ in(v2, v0)))
% 6.84/2.27  | (90) epsilon_connected(all_0_1_1)
% 6.84/2.27  | (91)  ! [v0] :  ! [v1] : ( ~ element(v0, v1) | empty(v1) | in(v0, v1))
% 6.84/2.27  | (92)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ empty(v1))
% 6.84/2.28  | (93)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ empty(v1) |  ~ empty(v0))
% 6.84/2.28  | (94) function(all_0_0_0)
% 6.84/2.28  | (95)  ! [v0] : ( ~ empty(v0) | ordinal(v0))
% 6.84/2.28  | (96)  ! [v0] :  ! [v1] : ( ~ in(v0, v1) | element(v0, v1))
% 6.84/2.28  | (97)  ! [v0] : (v0 = empty_set |  ~ empty(v0))
% 6.84/2.28  | (98) relation(all_0_6_6)
% 6.84/2.28  | (99)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v0) = v1) |  ~ ordinal_subset(v1, v2) |  ~ ordinal(v2) |  ~ ordinal(v0) | in(v0, v2))
% 6.84/2.28  | (100)  ! [v0] :  ! [v1] : ( ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v0, v0))
% 6.84/2.28  |
% 6.84/2.28  | Instantiating formula (93) with all_0_3_3, all_0_2_2 and discharging atoms empty(all_0_2_2), empty(all_0_3_3), yields:
% 6.84/2.28  | (101) all_0_2_2 = all_0_3_3
% 6.84/2.28  |
% 6.84/2.28  | Instantiating formula (93) with all_0_4_4, all_0_2_2 and discharging atoms empty(all_0_2_2), empty(all_0_4_4), yields:
% 6.84/2.28  | (102) all_0_2_2 = all_0_4_4
% 6.84/2.28  |
% 6.84/2.28  | Instantiating formula (93) with all_0_5_5, all_0_3_3 and discharging atoms empty(all_0_3_3), empty(all_0_5_5), yields:
% 6.84/2.28  | (103) all_0_3_3 = all_0_5_5
% 6.84/2.28  |
% 6.84/2.28  | Instantiating formula (93) with empty_set, all_0_3_3 and discharging atoms empty(all_0_3_3), empty(empty_set), yields:
% 6.84/2.28  | (104) all_0_3_3 = empty_set
% 6.84/2.28  |
% 6.84/2.28  | Combining equations (101,102) yields a new equation:
% 6.84/2.28  | (105) all_0_3_3 = all_0_4_4
% 6.84/2.28  |
% 6.84/2.28  | Simplifying 105 yields:
% 6.84/2.28  | (106) all_0_3_3 = all_0_4_4
% 6.84/2.28  |
% 6.84/2.28  | Combining equations (104,106) yields a new equation:
% 6.84/2.28  | (107) all_0_4_4 = empty_set
% 6.84/2.28  |
% 6.84/2.28  | Combining equations (103,106) yields a new equation:
% 6.84/2.28  | (108) all_0_4_4 = all_0_5_5
% 6.84/2.28  |
% 6.84/2.28  | Combining equations (107,108) yields a new equation:
% 6.84/2.28  | (109) all_0_5_5 = empty_set
% 6.84/2.28  |
% 6.84/2.28  | From (109) and (41) follows:
% 6.84/2.28  | (80) ordinal(empty_set)
% 6.84/2.28  |
% 6.84/2.28  | Instantiating formula (89) with all_0_15_15 and discharging atoms ordinal(all_0_15_15), yields:
% 6.84/2.28  | (111) being_limit_ordinal(all_0_15_15) |  ? [v0] :  ? [v1] : (succ(v0) = v1 & ordinal(v0) & in(v0, all_0_15_15) &  ~ in(v1, all_0_15_15))
% 6.84/2.28  |
% 6.84/2.28  | Instantiating formula (100) with empty_set, all_0_15_15 and discharging atoms ordinal(all_0_15_15), ordinal(empty_set), yields:
% 6.84/2.28  | (112) ordinal_subset(all_0_15_15, all_0_15_15)
% 6.84/2.28  |
% 6.84/2.28  +-Applying beta-rule and splitting (14), into two cases.
% 6.84/2.28  |-Branch one:
% 6.84/2.28  | (113) all_0_13_13 = all_0_15_15 & succ(all_0_14_14) = all_0_15_15 & being_limit_ordinal(all_0_15_15) & ordinal(all_0_14_14)
% 6.84/2.28  |
% 6.84/2.28  	| Applying alpha-rule on (113) yields:
% 6.84/2.28  	| (114) all_0_13_13 = all_0_15_15
% 6.84/2.28  	| (115) succ(all_0_14_14) = all_0_15_15
% 6.84/2.28  	| (116) being_limit_ordinal(all_0_15_15)
% 6.84/2.28  	| (117) ordinal(all_0_14_14)
% 6.84/2.28  	|
% 6.84/2.28  	| Instantiating formula (99) with all_0_15_15, all_0_15_15, all_0_14_14 and discharging atoms succ(all_0_14_14) = all_0_15_15, ordinal_subset(all_0_15_15, all_0_15_15), ordinal(all_0_14_14), ordinal(all_0_15_15), yields:
% 6.84/2.28  	| (118) in(all_0_14_14, all_0_15_15)
% 6.84/2.28  	|
% 6.84/2.28  	| Instantiating formula (21) with all_0_15_15, all_0_14_14, all_0_15_15 and discharging atoms succ(all_0_14_14) = all_0_15_15, being_limit_ordinal(all_0_15_15), ordinal(all_0_14_14), ordinal(all_0_15_15), in(all_0_14_14, all_0_15_15), yields:
% 6.84/2.28  	| (119) in(all_0_15_15, all_0_15_15)
% 6.84/2.28  	|
% 6.84/2.28  	| Instantiating formula (30) with all_0_15_15, all_0_15_15 and discharging atoms in(all_0_15_15, all_0_15_15), yields:
% 6.84/2.28  	| (120) $false
% 6.84/2.28  	|
% 6.84/2.28  	|-The branch is then unsatisfiable
% 6.84/2.28  |-Branch two:
% 6.84/2.28  | (121)  ~ being_limit_ordinal(all_0_15_15) &  ! [v0] : ( ~ ordinal(v0) |  ? [v1] : ( ~ (v1 = all_0_15_15) & succ(v0) = v1))
% 6.84/2.28  |
% 6.84/2.29  	| Applying alpha-rule on (121) yields:
% 6.84/2.29  	| (122)  ~ being_limit_ordinal(all_0_15_15)
% 6.84/2.29  	| (123)  ! [v0] : ( ~ ordinal(v0) |  ? [v1] : ( ~ (v1 = all_0_15_15) & succ(v0) = v1))
% 6.84/2.29  	|
% 6.84/2.29  	+-Applying beta-rule and splitting (111), into two cases.
% 6.84/2.29  	|-Branch one:
% 6.84/2.29  	| (116) being_limit_ordinal(all_0_15_15)
% 6.84/2.29  	|
% 6.84/2.29  		| Using (116) and (122) yields:
% 6.84/2.29  		| (120) $false
% 6.84/2.29  		|
% 6.84/2.29  		|-The branch is then unsatisfiable
% 6.84/2.29  	|-Branch two:
% 6.84/2.29  	| (122)  ~ being_limit_ordinal(all_0_15_15)
% 6.84/2.29  	| (127)  ? [v0] :  ? [v1] : (succ(v0) = v1 & ordinal(v0) & in(v0, all_0_15_15) &  ~ in(v1, all_0_15_15))
% 6.84/2.29  	|
% 6.84/2.29  		| Instantiating (127) with all_43_0_24, all_43_1_25 yields:
% 6.84/2.29  		| (128) succ(all_43_1_25) = all_43_0_24 & ordinal(all_43_1_25) & in(all_43_1_25, all_0_15_15) &  ~ in(all_43_0_24, all_0_15_15)
% 6.84/2.29  		|
% 6.84/2.29  		| Applying alpha-rule on (128) yields:
% 6.84/2.29  		| (129) succ(all_43_1_25) = all_43_0_24
% 6.84/2.29  		| (130) ordinal(all_43_1_25)
% 6.84/2.29  		| (131) in(all_43_1_25, all_0_15_15)
% 6.84/2.29  		| (132)  ~ in(all_43_0_24, all_0_15_15)
% 6.84/2.29  		|
% 6.84/2.29  		| Instantiating formula (78) with all_43_0_24, all_43_1_25 and discharging atoms succ(all_43_1_25) = all_43_0_24, ordinal(all_43_1_25), yields:
% 6.84/2.29  		| (133) epsilon_transitive(all_43_0_24)
% 6.84/2.29  		|
% 6.84/2.29  		| Instantiating formula (32) with all_43_0_24, all_43_1_25 and discharging atoms succ(all_43_1_25) = all_43_0_24, ordinal(all_43_1_25), yields:
% 6.84/2.29  		| (134) ordinal(all_43_0_24)
% 6.84/2.29  		|
% 6.84/2.29  		| Instantiating formula (123) with all_43_1_25 and discharging atoms ordinal(all_43_1_25), yields:
% 6.84/2.29  		| (135)  ? [v0] : ( ~ (v0 = all_0_15_15) & succ(all_43_1_25) = v0)
% 6.84/2.29  		|
% 6.84/2.29  		| Instantiating formula (50) with all_0_15_15, all_43_0_24, all_43_1_25 and discharging atoms succ(all_43_1_25) = all_43_0_24, ordinal(all_43_1_25), ordinal(all_0_15_15), in(all_43_1_25, all_0_15_15), yields:
% 6.84/2.29  		| (136) ordinal_subset(all_43_0_24, all_0_15_15)
% 6.84/2.29  		|
% 6.84/2.29  		| Instantiating (135) with all_55_0_28 yields:
% 6.84/2.29  		| (137)  ~ (all_55_0_28 = all_0_15_15) & succ(all_43_1_25) = all_55_0_28
% 6.84/2.29  		|
% 6.84/2.29  		| Applying alpha-rule on (137) yields:
% 6.84/2.29  		| (138)  ~ (all_55_0_28 = all_0_15_15)
% 6.84/2.29  		| (139) succ(all_43_1_25) = all_55_0_28
% 6.84/2.29  		|
% 6.84/2.29  		| Instantiating formula (6) with all_43_1_25, all_55_0_28, all_43_0_24 and discharging atoms succ(all_43_1_25) = all_55_0_28, succ(all_43_1_25) = all_43_0_24, yields:
% 6.84/2.29  		| (140) all_55_0_28 = all_43_0_24
% 6.84/2.29  		|
% 6.84/2.29  		| Equations (140) can reduce 138 to:
% 6.84/2.29  		| (141)  ~ (all_43_0_24 = all_0_15_15)
% 6.84/2.29  		|
% 6.84/2.29  		| Instantiating formula (57) with all_0_15_15, all_43_0_24 and discharging atoms ordinal_subset(all_43_0_24, all_0_15_15), ordinal(all_43_0_24), ordinal(all_0_15_15), yields:
% 6.84/2.29  		| (142) subset(all_43_0_24, all_0_15_15)
% 6.84/2.29  		|
% 6.84/2.29  		| Instantiating formula (65) with all_0_15_15, all_43_0_24 and discharging atoms subset(all_43_0_24, all_0_15_15), yields:
% 6.84/2.29  		| (143) all_43_0_24 = all_0_15_15 | proper_subset(all_43_0_24, all_0_15_15)
% 6.84/2.29  		|
% 6.84/2.29  		+-Applying beta-rule and splitting (143), into two cases.
% 6.84/2.29  		|-Branch one:
% 6.84/2.29  		| (144) proper_subset(all_43_0_24, all_0_15_15)
% 6.84/2.29  		|
% 6.84/2.29  			| Instantiating formula (67) with all_0_15_15, all_43_0_24 and discharging atoms epsilon_transitive(all_43_0_24), ordinal(all_0_15_15), proper_subset(all_43_0_24, all_0_15_15),  ~ in(all_43_0_24, all_0_15_15), yields:
% 6.84/2.29  			| (120) $false
% 6.84/2.29  			|
% 6.84/2.29  			|-The branch is then unsatisfiable
% 6.84/2.29  		|-Branch two:
% 6.84/2.29  		| (146)  ~ proper_subset(all_43_0_24, all_0_15_15)
% 6.84/2.29  		| (147) all_43_0_24 = all_0_15_15
% 6.84/2.29  		|
% 6.84/2.29  			| Equations (147) can reduce 141 to:
% 6.84/2.29  			| (148) $false
% 6.84/2.29  			|
% 6.84/2.29  			|-The branch is then unsatisfiable
% 6.84/2.29  % SZS output end Proof for theBenchmark
% 6.84/2.29  
% 6.84/2.29  1719ms
%------------------------------------------------------------------------------