TSTP Solution File: SEU238+2 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : SEU238+2 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 16:30:18 EDT 2023

% Result   : Theorem 70.32s 70.58s
% Output   : Proof 70.39s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.15  % Problem    : SEU238+2 : TPTP v8.1.2. Released v3.3.0.
% 0.00/0.16  % Command    : do_cvc5 %s %d
% 0.15/0.37  % Computer : n014.cluster.edu
% 0.15/0.37  % Model    : x86_64 x86_64
% 0.15/0.37  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.37  % Memory   : 8042.1875MB
% 0.15/0.37  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.37  % CPULimit   : 300
% 0.15/0.37  % WCLimit    : 300
% 0.15/0.37  % DateTime   : Thu Aug 24 00:52:34 EDT 2023
% 0.15/0.37  % CPUTime    : 
% 0.22/0.53  %----Proving TF0_NAR, FOF, or CNF
% 70.32/70.58  ------- convert to smt2 : /export/starexec/sandbox2/tmp/tmp.444IjGKM9C/cvc5---1.0.5_20548.p...
% 70.32/70.58  ------- get file name : TPTP file name is SEU238+2
% 70.32/70.58  ------- cvc5-fof : /export/starexec/sandbox2/solver/bin/cvc5---1.0.5_20548.smt2...
% 70.32/70.58  --- Run --decision=internal --simplification=none --no-inst-no-entail --no-cbqi --full-saturate-quant at 10...
% 70.32/70.58  --- Run --no-e-matching --full-saturate-quant at 5...
% 70.32/70.58  --- Run --no-e-matching --enum-inst-sum --full-saturate-quant at 5...
% 70.32/70.58  --- Run --finite-model-find --uf-ss=no-minimal at 5...
% 70.32/70.58  --- Run --multi-trigger-when-single --full-saturate-quant at 5...
% 70.32/70.58  --- Run --trigger-sel=max --full-saturate-quant at 5...
% 70.32/70.58  --- Run --multi-trigger-when-single --multi-trigger-priority --full-saturate-quant at 5...
% 70.32/70.58  --- Run --multi-trigger-cache --full-saturate-quant at 5...
% 70.32/70.58  --- Run --prenex-quant=none --full-saturate-quant at 5...
% 70.32/70.58  --- Run --enum-inst-interleave --decision=internal --full-saturate-quant at 5...
% 70.32/70.58  --- Run --relevant-triggers --full-saturate-quant at 5...
% 70.32/70.58  --- Run --finite-model-find --e-matching --sort-inference --uf-ss-fair at 5...
% 70.32/70.58  --- Run --pre-skolem-quant=on --full-saturate-quant at 10...
% 70.32/70.58  % SZS status Theorem for SEU238+2
% 70.32/70.58  % SZS output start Proof for SEU238+2
% 70.32/70.58  (
% 70.32/70.58  (let ((_let_1 (not (forall ((A $$unsorted)) (let ((_let_1 (tptp.being_limit_ordinal A))) (=> (tptp.ordinal A) (and (not (and (not _let_1) (forall ((B $$unsorted)) (=> (tptp.ordinal B) (not (= A (tptp.succ B))))))) (not (and (exists ((B $$unsorted)) (and (tptp.ordinal B) (= A (tptp.succ B)))) _let_1))))))))) (let ((_let_2 (forall ((A $$unsorted)) (=> (tptp.ordinal A) (= (tptp.being_limit_ordinal A) (forall ((B $$unsorted)) (=> (tptp.ordinal B) (=> (tptp.in B A) (tptp.in (tptp.succ B) A))))))))) (let ((_let_3 (forall ((A $$unsorted)) (=> (tptp.ordinal A) (forall ((B $$unsorted)) (=> (tptp.ordinal B) (= (tptp.in A B) (tptp.ordinal_subset (tptp.succ A) B)))))))) (let ((_let_4 (forall ((A $$unsorted)) (=> (tptp.epsilon_transitive A) (forall ((B $$unsorted)) (=> (tptp.ordinal B) (=> (tptp.proper_subset A B) (tptp.in A B)))))))) (let ((_let_5 (forall ((A $$unsorted)) (tptp.in A (tptp.succ A))))) (let ((_let_6 (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.ordinal A) (tptp.ordinal B)) (= (tptp.ordinal_subset A B) (tptp.subset A B)))))) (let ((_let_7 (tptp.relation tptp.empty_set))) (let ((_let_8 (tptp.empty tptp.empty_set))) (let ((_let_9 (forall ((A $$unsorted)) (let ((_let_1 (tptp.succ A))) (=> (tptp.ordinal A) (and (not (tptp.empty _let_1)) (tptp.epsilon_transitive _let_1) (tptp.epsilon_connected _let_1) (tptp.ordinal _let_1))))))) (let ((_let_10 (tptp.relation_empty_yielding tptp.empty_set))) (let ((_let_11 (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.proper_subset A B) (and (tptp.subset A B) (not (= A B))))))) (let ((_let_12 (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (not (tptp.in B A)))))) (let ((_let_13 (forall ((B $$unsorted)) (or (not (tptp.ordinal B)) (not (tptp.in B skv_23)) (tptp.in (tptp.succ B) skv_23))))) (let ((_let_14 (tptp.succ skv_23))) (let ((_let_15 (tptp.in _let_14 skv_23))) (let ((_let_16 (tptp.in skv_23 skv_23))) (let ((_let_17 (not _let_16))) (let ((_let_18 (tptp.ordinal skv_23))) (let ((_let_19 (not _let_18))) (let ((_let_20 (or _let_19 _let_17 _let_15))) (let ((_let_21 (tptp.being_limit_ordinal skv_23))) (let ((_let_22 (= _let_21 _let_13))) (let ((_let_23 (or _let_19 _let_22))) (let ((_let_24 (forall ((A $$unsorted)) (or (not (tptp.ordinal A)) (= (tptp.being_limit_ordinal A) (forall ((B $$unsorted)) (or (not (tptp.ordinal B)) (not (tptp.in B A)) (tptp.in (tptp.succ B) A)))))))) (let ((_let_25 (EQ_RESOLVE (ASSUME :args (_let_2)) (MACRO_SR_EQ_INTRO :args (_let_2 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_26 (tptp.succ skv_24))) (let ((_let_27 (= skv_23 _let_26))) (let ((_let_28 (not _let_27))) (let ((_let_29 (tptp.ordinal skv_24))) (let ((_let_30 (not _let_29))) (let ((_let_31 (not _let_21))) (let ((_let_32 (or _let_31 _let_30 _let_28))) (let ((_let_33 (forall ((B $$unsorted)) (or (not (tptp.ordinal B)) (not (= (tptp.succ B) skv_23)))))) (let ((_let_34 (not _let_33))) (let ((_let_35 (or _let_21 _let_34))) (let ((_let_36 (EQ_RESOLVE (ASSUME :args (_let_1)) (TRANS (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (forall ((A $$unsorted) (BOUND_VARIABLE_5718 $$unsorted)) (let ((_let_1 (tptp.being_limit_ordinal A))) (or (not (tptp.ordinal A)) (and (or _let_1 (not (forall ((B $$unsorted)) (or (not (tptp.ordinal B)) (not (= A (tptp.succ B))))))) (or (not _let_1) (not (tptp.ordinal BOUND_VARIABLE_5718)) (not (= A (tptp.succ BOUND_VARIABLE_5718))))))))) (not (or _let_19 (and _let_35 _let_32)))))))))) (let ((_let_37 (NOT_NOT_ELIM (NOT_OR_ELIM _let_36 :args (0))))) (let ((_let_38 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_23)) :args ((or _let_19 _let_22 (not _let_23)))) _let_37 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_25 :args (skv_23 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (tptp.ordinal A) false))))) :args (_let_24))) _let_25 :args (_let_23 false _let_24)) :args (_let_22 false _let_18 false _let_23)))) (let ((_let_39 (tptp.succ SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33))) (let ((_let_40 (tptp.in _let_39 skv_23))) (let ((_let_41 (tptp.in SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 skv_23))) (let ((_let_42 (not _let_41))) (let ((_let_43 (tptp.ordinal SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33))) (let ((_let_44 (not _let_43))) (let ((_let_45 (or _let_44 _let_42 _let_40))) (let ((_let_46 (= skv_23 _let_39))) (let ((_let_47 (not _let_46))) (let ((_let_48 (or _let_44 _let_47))) (let ((_let_49 (tptp.ordinal _let_39))) (let ((_let_50 (tptp.epsilon_transitive _let_39))) (let ((_let_51 (and (not (tptp.empty _let_39)) _let_50 (tptp.epsilon_connected _let_39) _let_49))) (let ((_let_52 (or _let_44 _let_51))) (let ((_let_53 (tptp.ordinal_subset _let_39 skv_23))) (let ((_let_54 (= _let_41 _let_53))) (let ((_let_55 (or _let_44 _let_19 _let_54))) (let ((_let_56 (tptp.proper_subset _let_39 skv_23))) (let ((_let_57 (not _let_56))) (let ((_let_58 (not _let_50))) (let ((_let_59 (or _let_58 _let_19 _let_57 _let_40))) (let ((_let_60 (tptp.subset _let_39 skv_23))) (let ((_let_61 (= _let_53 _let_60))) (let ((_let_62 (not _let_49))) (let ((_let_63 (or _let_62 _let_19 _let_61))) (let ((_let_64 (and _let_60 _let_47))) (let ((_let_65 (= _let_56 _let_64))) (let ((_let_66 (or))) (let ((_let_67 (REFL :args (_let_32)))) (let ((_let_68 (not _let_22))) (let ((_let_69 (not _let_13))) (let ((_let_70 (_let_22))) (let ((_let_71 (NOT_AND (NOT_OR_ELIM _let_36 :args (1))))) (let ((_let_72 (_let_69))) (let ((_let_73 (REFL :args (_let_45)))) (let ((_let_74 (_let_33))) (let ((_let_75 (forall ((A $$unsorted)) (let ((_let_1 (tptp.succ A))) (or (not (tptp.ordinal A)) (and (not (tptp.empty _let_1)) (tptp.epsilon_transitive _let_1) (tptp.epsilon_connected _let_1) (tptp.ordinal _let_1))))))) (let ((_let_76 (EQ_RESOLVE (ASSUME :args (_let_9)) (MACRO_SR_EQ_INTRO :args (_let_9 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_77 (forall ((A $$unsorted) (BOUND_VARIABLE_5536 $$unsorted)) (or (not (tptp.ordinal A)) (not (tptp.ordinal BOUND_VARIABLE_5536)) (= (tptp.in A BOUND_VARIABLE_5536) (tptp.ordinal_subset (tptp.succ A) BOUND_VARIABLE_5536)))))) (let ((_let_78 (EQ_RESOLVE (ASSUME :args (_let_3)) (MACRO_SR_EQ_INTRO :args (_let_3 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_79 (not _let_51))) (let ((_let_80 (forall ((A $$unsorted) (BOUND_VARIABLE_5315 $$unsorted)) (or (not (tptp.epsilon_transitive A)) (not (tptp.ordinal BOUND_VARIABLE_5315)) (not (tptp.proper_subset A BOUND_VARIABLE_5315)) (tptp.in A BOUND_VARIABLE_5315))))) (let ((_let_81 (EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO :args (_let_4 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_82 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.ordinal A)) (not (tptp.ordinal B)) (= (tptp.ordinal_subset A B) (tptp.subset A B)))))) (let ((_let_83 (EQ_RESOLVE (ASSUME :args (_let_6)) (MACRO_SR_EQ_INTRO :args (_let_6 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_84 (_let_11))) (let ((_let_85 (ASSUME :args _let_84))) (let ((_let_86 (not _let_60))) (let ((_let_87 (_let_64))) (let ((_let_88 (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_AND_NEG :args _let_87) (CONG (REFL :args _let_87) (REFL :args (_let_86)) (MACRO_SR_PRED_INTRO :args ((= (not _let_47) _let_46))) :args _let_66)) :args ((or _let_46 _let_64 _let_86))) (REORDERING (CNF_EQUIV_POS1 :args (_let_61)) :args ((or (not _let_53) _let_60 (not _let_61)))) (REORDERING (CNF_EQUIV_POS2 :args (_let_65)) :args ((or _let_56 (not _let_64) (not _let_65)))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE _let_85 :args (_let_39 skv_23 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((tptp.proper_subset A B)))) :args _let_84))) _let_85 :args (_let_65 false _let_11)) (REORDERING (CNF_OR_POS :args (_let_63)) :args ((or _let_19 _let_62 _let_61 (not _let_63)))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_83 :args (_let_39 skv_23 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((tptp.ordinal_subset A B)))) :args (_let_82))) _let_83 :args (_let_63 false _let_82)) _let_37 (REORDERING (CNF_OR_POS :args (_let_59)) :args ((or _let_19 _let_40 _let_58 _let_57 (not _let_59)))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_81 :args (_let_39 skv_23 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (tptp.in A BOUND_VARIABLE_5315) true))))) :args (_let_80))) _let_81 :args (_let_59 false _let_80)) _let_37 (REORDERING (CNF_EQUIV_POS1 :args (_let_54)) :args ((or _let_42 _let_53 (not _let_54)))) (REORDERING (CNF_AND_POS :args (_let_51 3)) :args ((or _let_49 _let_79))) (REORDERING (CNF_AND_POS :args (_let_51 1)) :args ((or _let_50 _let_79))) (REORDERING (CNF_OR_POS :args (_let_48)) :args ((or _let_44 _let_47 (not _let_48)))) (REORDERING (CNF_OR_POS :args (_let_55)) :args ((or _let_19 _let_44 _let_54 (not _let_55)))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_78 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 skv_23 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((tptp.in A BOUND_VARIABLE_5536)))) :args (_let_77))) _let_78 :args (_let_55 false _let_77)) _let_37 (REORDERING (CNF_OR_POS :args (_let_52)) :args ((or _let_44 _let_51 (not _let_52)))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_76 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((tptp.succ A)))) :args (_let_75))) _let_76 :args (_let_52 false _let_75)) (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_74) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_33 QUANTIFIERS_INST_CBQI_PROP)) :args _let_74))) (CNF_OR_NEG :args (_let_45 2)) (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_45 1)) (CONG _let_73 (MACRO_SR_PRED_INTRO :args ((= (not _let_42) _let_41))) :args _let_66)) :args ((or _let_41 _let_45))) (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_45 0)) (CONG _let_73 (MACRO_SR_PRED_INTRO :args ((= (not _let_44) _let_43))) :args _let_66)) :args ((or _let_43 _let_45))) (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_35 1)) (CONG (REFL :args (_let_35)) (MACRO_SR_PRED_INTRO :args ((= (not _let_34) _let_33))) :args _let_66)) :args ((or _let_33 _let_35))) (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE (ASSUME :args _let_72)) :args _let_72)) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_69) _let_13))) (REFL :args ((not _let_45))) :args _let_66)) _let_71 (REORDERING (CNF_EQUIV_POS2 :args _let_70) :args ((or _let_21 _let_69 _let_68))) _let_38 (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_32 0)) (CONG _let_67 (MACRO_SR_PRED_INTRO :args ((= (not _let_31) _let_21))) :args _let_66)) :args ((or _let_21 _let_32))) :args (_let_21 false _let_60 true _let_64 false _let_65 false _let_61 false _let_63 false _let_18 true _let_56 false _let_59 false _let_18 false _let_53 false _let_49 false _let_50 true _let_46 false _let_54 false _let_55 false _let_18 false _let_51 false _let_52 false _let_48 true _let_40 false _let_41 false _let_43 false _let_33 true _let_45 true _let_35 true _let_13 false _let_22 false _let_32)))) (let ((_let_89 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_POS1 :args _let_70) :args ((or _let_31 _let_13 _let_68))) _let_88 _let_38 :args (_let_13 false _let_21 false _let_22)))) (let ((_let_90 (not _let_20))) (let ((_let_91 (tptp.in _let_26 skv_23))) (let ((_let_92 (tptp.in skv_24 skv_23))) (let ((_let_93 (not _let_92))) (let ((_let_94 (or _let_30 _let_93 _let_91))) (let ((_let_95 (_let_13))) (let ((_let_96 (ASSUME :args _let_95))) (let ((_let_97 (tptp.in skv_24 _let_26))) (let ((_let_98 (_let_5))) (let ((_let_99 (ASSUME :args _let_98))) (let ((_let_100 ((tptp.succ A)))) (let ((_let_101 (MACRO_RESOLUTION_TRUST _let_71 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_NEG :args (_let_35 0)) :args ((or _let_31 _let_35))) _let_88 :args (_let_35 false _let_21)) :args ((not _let_32) false _let_35)))) (let ((_let_102 (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_32 2)) (CONG _let_67 (MACRO_SR_PRED_INTRO :args ((= (not _let_28) _let_27))) :args _let_66)) :args ((or _let_27 _let_32))) _let_101 :args (_let_27 true _let_32)))) (let ((_let_103 (and _let_27 _let_97))) (let ((_let_104 (ASSUME :args (_let_97)))) (let ((_let_105 (APPLY_UF tptp.in))) (let ((_let_106 (ASSUME :args (_let_27)))) (let ((_let_107 (SYMM (SYMM _let_106)))) (let ((_let_108 (and _let_27 _let_91))) (let ((_let_109 (ASSUME :args (_let_91)))) (let ((_let_110 (tptp.in skv_23 _let_14))) (let ((_let_111 (not _let_110))) (let ((_let_112 (not _let_15))) (let ((_let_113 (or _let_112 _let_111))) (let ((_let_114 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.in A B)) (not (tptp.in B A)))))) (let ((_let_115 (EQ_RESOLVE (ASSUME :args (_let_12)) (MACRO_SR_EQ_INTRO :args (_let_12 SB_DEFAULT SBA_FIXPOINT))))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_96 :args (skv_23 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_95)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_20)) :args ((or _let_19 _let_15 _let_17 _let_90))) _let_37 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_113)) :args ((or _let_111 _let_112 (not _let_113)))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_99 :args (skv_23 QUANTIFIERS_INST_E_MATCHING_SIMPLE _let_100)) :args _let_98)) _let_99 :args (_let_110 false _let_5)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_115 :args (_let_14 skv_23 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (tptp.in B A) false))))) :args (_let_114))) _let_115 :args (_let_113 false _let_114)) :args (_let_112 false _let_110 false _let_113)) (MACRO_RESOLUTION_TRUST (REORDERING (RESOLUTION (CNF_AND_NEG :args (_let_108)) (IMPLIES_ELIM (SCOPE (MODUS_PONENS (AND_INTRO _let_109 _let_106) (SCOPE (TRUE_ELIM (TRANS (CONG _let_107 (REFL :args (skv_23)) :args _let_105) (TRUE_INTRO _let_109))) :args (_let_91 _let_27))) :args (_let_27 _let_91))) :args (true _let_108)) :args ((or _let_28 _let_16 (not _let_91)))) _let_102 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_94)) :args ((or _let_30 _let_91 _let_93 (not _let_94)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_32 1)) (CONG _let_67 (MACRO_SR_PRED_INTRO :args ((= (not _let_30) _let_29))) :args _let_66)) :args ((or _let_29 _let_32))) _let_101 :args (_let_29 true _let_32)) (MACRO_RESOLUTION_TRUST (RESOLUTION (CNF_AND_NEG :args (_let_103)) (IMPLIES_ELIM (SCOPE (MODUS_PONENS (AND_INTRO _let_104 _let_106) (SCOPE (TRUE_ELIM (TRANS (CONG (REFL :args (skv_24)) _let_107 :args _let_105) (TRUE_INTRO _let_104))) :args (_let_97 _let_27))) :args (_let_27 _let_97))) :args (true _let_103)) _let_102 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_99 :args (skv_24 QUANTIFIERS_INST_E_MATCHING_SIMPLE _let_100)) :args _let_98)) _let_99 :args (_let_97 false _let_5)) :args (_let_92 false _let_27 false _let_97)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_96 :args (skv_24 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_95)) _let_89 :args (_let_94 false _let_13)) :args (_let_91 false _let_29 false _let_92 false _let_94)) :args (_let_16 false _let_27 false _let_91)) :args (_let_90 false _let_18 true _let_15 false _let_16)) _let_89 :args (false true _let_20 false _let_13)) :args (_let_12 (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.proper_subset A B) (not (tptp.proper_subset B A)))) (forall ((A $$unsorted)) (=> (tptp.empty A) (tptp.function A))) (forall ((A $$unsorted)) (=> (tptp.ordinal A) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A)))) (forall ((A $$unsorted)) (=> (tptp.empty A) (tptp.relation A))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.function A))) (let ((_let_2 (tptp.relation A))) (=> (and _let_2 (tptp.empty A) _let_1) (and _let_2 _let_1 (tptp.one_to_one A)))))) (forall ((A $$unsorted)) (=> (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A)) (tptp.ordinal A))) (forall ((A $$unsorted)) (=> (tptp.empty A) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A)))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.unordered_pair A B) (tptp.unordered_pair B A))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_union2 A B) (tptp.set_union2 B A))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_intersection2 A B) (tptp.set_intersection2 B A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.ordinal A) (tptp.ordinal B)) (or (tptp.ordinal_subset A B) (tptp.ordinal_subset B A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (= B (tptp.identity_relation A)) (forall ((C $$unsorted) (D $$unsorted)) (= (tptp.in (tptp.ordered_pair C D) B) (and (tptp.in C A) (= C D))))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= A B) (and (tptp.subset A B) (tptp.subset B A)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (= C (tptp.relation_dom_restriction A B)) (forall ((D $$unsorted) (E $$unsorted)) (let ((_let_1 (tptp.ordered_pair D E))) (= (tptp.in _let_1 C) (and (tptp.in D B) (tptp.in _let_1 A)))))))))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (forall ((B $$unsorted) (C $$unsorted)) (= (= C (tptp.relation_image A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (exists ((E $$unsorted)) (and (tptp.in E (tptp.relation_dom A)) (tptp.in E B) (= D (tptp.apply A E)))))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (forall ((C $$unsorted)) (=> (tptp.relation C) (= (= C (tptp.relation_rng_restriction A B)) (forall ((D $$unsorted) (E $$unsorted)) (let ((_let_1 (tptp.ordered_pair D E))) (= (tptp.in _let_1 C) (and (tptp.in E A) (tptp.in _let_1 B)))))))))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (forall ((B $$unsorted) (C $$unsorted)) (= (= C (tptp.relation_inverse_image A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (and (tptp.in D (tptp.relation_dom A)) (tptp.in (tptp.apply A D) B)))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted) (C $$unsorted)) (= (= C (tptp.relation_image A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (exists ((E $$unsorted)) (and (tptp.in (tptp.ordered_pair E D) A) (tptp.in E B))))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted) (C $$unsorted)) (= (= C (tptp.relation_inverse_image A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (exists ((E $$unsorted)) (and (tptp.in (tptp.ordered_pair D E) A) (tptp.in E B))))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (= (= D (tptp.unordered_triple A B C)) (forall ((E $$unsorted)) (= (tptp.in E D) (not (and (not (= E A)) (not (= E B)) (not (= E C)))))))) (forall ((A $$unsorted)) (= (tptp.succ A) (tptp.set_union2 A (tptp.singleton A)))) (forall ((A $$unsorted)) (= (tptp.relation A) (forall ((B $$unsorted)) (not (and (tptp.in B A) (forall ((C $$unsorted) (D $$unsorted)) (not (= B (tptp.ordered_pair C D))))))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (= B (tptp.set_meet A)))) (let ((_let_2 (= A tptp.empty_set))) (and (=> (not _let_2) (= _let_1 (forall ((C $$unsorted)) (= (tptp.in C B) (forall ((D $$unsorted)) (=> (tptp.in D A) (tptp.in C D))))))) (=> _let_2 (= _let_1 (= B tptp.empty_set))))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= B (tptp.singleton A)) (forall ((C $$unsorted)) (= (tptp.in C B) (= C A))))) (forall ((A $$unsorted)) (= (= A tptp.empty_set) (forall ((B $$unsorted)) (not (tptp.in B A))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= B (tptp.powerset A)) (forall ((C $$unsorted)) (= (tptp.in C B) (tptp.subset C A))))) (forall ((A $$unsorted)) (= (tptp.epsilon_transitive A) (forall ((B $$unsorted)) (=> (tptp.in B A) (tptp.subset B A))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (= (= A B) (forall ((C $$unsorted) (D $$unsorted)) (let ((_let_1 (tptp.ordered_pair C D))) (= (tptp.in _let_1 A) (tptp.in _let_1 B))))))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.element B A))) (let ((_let_2 (tptp.empty A))) (and (=> (not _let_2) (= _let_1 (tptp.in B A))) (=> _let_2 (= _let_1 (tptp.empty B))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (tptp.unordered_pair A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (or (= D A) (= D B)))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (tptp.set_union2 A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (or (tptp.in D A) (tptp.in D B)))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (tptp.cartesian_product2 A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (exists ((E $$unsorted) (F $$unsorted)) (and (tptp.in E A) (tptp.in F B) (= D (tptp.ordered_pair E F)))))))) (forall ((A $$unsorted)) (= (tptp.epsilon_connected A) (forall ((B $$unsorted) (C $$unsorted)) (not (and (tptp.in B A) (tptp.in C A) (not (tptp.in B C)) (not (= B C)) (not (tptp.in C B))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (= (tptp.subset A B) (forall ((C $$unsorted) (D $$unsorted)) (let ((_let_1 (tptp.ordered_pair C D))) (=> (tptp.in _let_1 A) (tptp.in _let_1 B))))))))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.subset A B) (forall ((C $$unsorted)) (=> (tptp.in C A) (tptp.in C B))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (tptp.set_intersection2 A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (and (tptp.in D A) (tptp.in D B)))))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (forall ((B $$unsorted) (C $$unsorted)) (let ((_let_1 (= C (tptp.apply A B)))) (let ((_let_2 (tptp.in B (tptp.relation_dom A)))) (and (=> _let_2 (= _let_1 (tptp.in (tptp.ordered_pair B C) A))) (=> (not _let_2) (= _let_1 (= C tptp.empty_set))))))))) (forall ((A $$unsorted)) (= (tptp.ordinal A) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (= (= B (tptp.relation_dom A)) (forall ((C $$unsorted)) (= (tptp.in C B) (exists ((D $$unsorted)) (tptp.in (tptp.ordered_pair C D) A)))))))) (forall ((A $$unsorted)) (= (tptp.cast_to_subset A) A)) (forall ((A $$unsorted) (B $$unsorted)) (= (= B (tptp.union A)) (forall ((C $$unsorted)) (= (tptp.in C B) (exists ((D $$unsorted)) (and (tptp.in C D) (tptp.in D A))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (tptp.set_difference A B)) (forall ((D $$unsorted)) (= (tptp.in D C) (and (tptp.in D A) (not (tptp.in D B))))))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (forall ((B $$unsorted)) (= (= B (tptp.relation_rng A)) (forall ((C $$unsorted)) (= (tptp.in C B) (exists ((D $$unsorted)) (and (tptp.in D (tptp.relation_dom A)) (= C (tptp.apply A D)))))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (= (= B (tptp.relation_rng A)) (forall ((C $$unsorted)) (= (tptp.in C B) (exists ((D $$unsorted)) (tptp.in (tptp.ordered_pair D C) A)))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (= (tptp.subset_complement A B) (tptp.set_difference A B)))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.ordered_pair A B) (tptp.unordered_pair (tptp.unordered_pair A B) (tptp.singleton A)))) (forall ((A $$unsorted)) (= (tptp.being_limit_ordinal A) (= A (tptp.union A)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.relation_field A) (tptp.set_union2 (tptp.relation_dom A) (tptp.relation_rng A))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (= (= B (tptp.relation_inverse A)) (forall ((C $$unsorted) (D $$unsorted)) (= (tptp.in (tptp.ordered_pair C D) B) (tptp.in (tptp.ordered_pair D C) A)))))))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.disjoint A B) (= (tptp.set_intersection2 A B) tptp.empty_set))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (= (tptp.one_to_one A) (forall ((B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.relation_dom A))) (=> (and (tptp.in B _let_1) (tptp.in C _let_1) (= (tptp.apply A B) (tptp.apply A C))) (= B C))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (forall ((C $$unsorted)) (=> (tptp.relation C) (= (= C (tptp.relation_composition A B)) (forall ((D $$unsorted) (E $$unsorted)) (= (tptp.in (tptp.ordered_pair D E) C) (exists ((F $$unsorted)) (and (tptp.in (tptp.ordered_pair D F) A) (tptp.in (tptp.ordered_pair F E) B)))))))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (forall ((C $$unsorted)) (=> (tptp.element C (tptp.powerset (tptp.powerset A))) (= (= C (tptp.complements_of_subsets A B)) (forall ((D $$unsorted)) (=> (tptp.element D (tptp.powerset A)) (= (tptp.in D C) (tptp.in (tptp.subset_complement A D) B))))))))) _let_11 (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (=> (tptp.one_to_one A) (= (tptp.function_inverse A) (tptp.relation_inverse A))))) true true true true true true true true true (forall ((A $$unsorted)) (let ((_let_1 (tptp.function_inverse A))) (=> (and (tptp.relation A) (tptp.function A)) (and (tptp.relation _let_1) (tptp.function _let_1))))) true (forall ((A $$unsorted)) (tptp.element (tptp.cast_to_subset A) (tptp.powerset A))) true true true true (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.powerset A))) (=> (tptp.element B _let_1) (tptp.element (tptp.subset_complement A B) _let_1)))) true true (forall ((A $$unsorted)) (=> (tptp.relation A) (tptp.relation (tptp.relation_inverse A)))) true true (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation A) (tptp.relation B)) (tptp.relation (tptp.relation_composition A B)))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.powerset A))) (=> (tptp.element B (tptp.powerset _let_1)) (tptp.element (tptp.union_of_subsets A B) _let_1)))) (forall ((A $$unsorted)) (tptp.relation (tptp.identity_relation A))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.powerset A))) (=> (tptp.element B (tptp.powerset _let_1)) (tptp.element (tptp.meet_of_subsets A B) _let_1)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.powerset A))) (=> (and (tptp.element B _let_1) (tptp.element C _let_1)) (tptp.element (tptp.subset_difference A B C) _let_1)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation A) (tptp.relation (tptp.relation_dom_restriction A B)))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.powerset (tptp.powerset A)))) (=> (tptp.element B _let_1) (tptp.element (tptp.complements_of_subsets A B) _let_1)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.relation (tptp.relation_rng_restriction A B)))) true true (forall ((A $$unsorted)) (exists ((B $$unsorted)) (tptp.element B A))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_composition B A))) (=> (and (tptp.empty A) (tptp.relation B)) (and (tptp.empty _let_1) (tptp.relation _let_1))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.relation_inverse A))) (=> (tptp.empty A) (and (tptp.empty _let_1) (tptp.relation _let_1))))) (and _let_8 _let_7 _let_10) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_dom_restriction A B))) (=> (and (tptp.relation A) (tptp.relation_empty_yielding A)) (and (tptp.relation _let_1) (tptp.relation_empty_yielding _let_1))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_composition A B))) (=> (and (tptp.relation A) (tptp.function A) (tptp.relation B) (tptp.function B)) (and (tptp.relation _let_1) (tptp.function _let_1))))) (forall ((A $$unsorted)) (not (tptp.empty (tptp.succ A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation A) (tptp.relation B)) (tptp.relation (tptp.set_intersection2 A B)))) (forall ((A $$unsorted)) (not (tptp.empty (tptp.powerset A)))) _let_8 (forall ((A $$unsorted) (B $$unsorted)) (not (tptp.empty (tptp.ordered_pair A B)))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.identity_relation A))) (and (tptp.relation _let_1) (tptp.function _let_1)))) (and _let_7 _let_10 (tptp.function tptp.empty_set) (tptp.one_to_one tptp.empty_set) _let_8 (tptp.epsilon_transitive tptp.empty_set) (tptp.epsilon_connected tptp.empty_set) (tptp.ordinal tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation A) (tptp.relation B)) (tptp.relation (tptp.set_union2 A B)))) (forall ((A $$unsorted)) (not (tptp.empty (tptp.singleton A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (tptp.empty A)) (not (tptp.empty (tptp.set_union2 A B))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.relation_inverse A))) (=> (and (tptp.relation A) (tptp.function A) (tptp.one_to_one A)) (and (tptp.relation _let_1) (tptp.function _let_1))))) _let_9 (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation A) (tptp.relation B)) (tptp.relation (tptp.set_difference A B)))) (forall ((A $$unsorted) (B $$unsorted)) (not (tptp.empty (tptp.unordered_pair A B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (tptp.empty A)) (not (tptp.empty (tptp.set_union2 B A))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_dom_restriction A B))) (=> (and (tptp.relation A) (tptp.function A)) (and (tptp.relation _let_1) (tptp.function _let_1))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.union A))) (=> (tptp.ordinal A) (and (tptp.epsilon_transitive _let_1) (tptp.epsilon_connected _let_1) (tptp.ordinal _let_1))))) (and _let_8 _let_7) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (not (tptp.empty A)) (not (tptp.empty B))) (not (tptp.empty (tptp.cartesian_product2 A B))))) (forall ((A $$unsorted)) (=> (and (not (tptp.empty A)) (tptp.relation A)) (not (tptp.empty (tptp.relation_dom A))))) (forall ((A $$unsorted)) (=> (and (not (tptp.empty A)) (tptp.relation A)) (not (tptp.empty (tptp.relation_rng A))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.relation_dom A))) (=> (tptp.empty A) (and (tptp.empty _let_1) (tptp.relation _let_1))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.relation_rng A))) (=> (tptp.empty A) (and (tptp.empty _let_1) (tptp.relation _let_1))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.relation_composition A B))) (=> (and (tptp.empty A) (tptp.relation B)) (and (tptp.empty _let_1) (tptp.relation _let_1))))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_union2 A A) A)) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_intersection2 A A) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (= (tptp.subset_complement A (tptp.subset_complement A B)) B))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.relation_inverse (tptp.relation_inverse A)) A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (= (tptp.complements_of_subsets A (tptp.complements_of_subsets A B)) B))) (forall ((A $$unsorted) (B $$unsorted)) (not (tptp.proper_subset A A))) (forall ((A $$unsorted)) (not (= (tptp.singleton A) tptp.empty_set))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (= (tptp.set_union2 (tptp.singleton A) B) B))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.disjoint (tptp.singleton A) B) (tptp.in A B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (tptp.in A B)) (tptp.disjoint (tptp.singleton A) B))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.subset (tptp.singleton A) B) (tptp.in A B))) (forall ((A $$unsorted) (B $$unsorted)) (= (= (tptp.set_difference A B) tptp.empty_set) (tptp.subset A B))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (forall ((C $$unsorted)) (=> (tptp.in C B) (tptp.in C A))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.subset A B) (or (tptp.in C A) (tptp.subset A (tptp.set_difference B (tptp.singleton C)))))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.singleton B))) (= (tptp.subset A _let_1) (or (= A tptp.empty_set) (= A _let_1))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (tptp.subset A (tptp.union B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (= (tptp.in (tptp.ordered_pair A B) (tptp.cartesian_product2 C D)) (and (tptp.in A C) (tptp.in B D)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (forall ((C $$unsorted)) (=> (tptp.in C A) (tptp.in C B))) (tptp.element A (tptp.powerset B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (= (tptp.in B (tptp.relation_dom (tptp.relation_dom_restriction C A))) (and (tptp.in B (tptp.relation_dom C)) (tptp.in B A))))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A))) (exists ((A $$unsorted)) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (exists ((A $$unsorted)) (and (tptp.empty A) (tptp.relation A))) (forall ((A $$unsorted)) (=> (not (tptp.empty A)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (not (tptp.empty B)))))) (exists ((A $$unsorted)) (tptp.empty A)) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.empty A) (tptp.function A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A) (tptp.one_to_one A) (tptp.empty A) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.relation A))) (forall ((A $$unsorted)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (tptp.empty B)))) (exists ((A $$unsorted)) (not (tptp.empty A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A) (tptp.one_to_one A))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.relation_empty_yielding A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.relation_empty_yielding A) (tptp.function A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (= (tptp.union_of_subsets A B) (tptp.union B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (= (tptp.meet_of_subsets A B) (tptp.set_meet B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.powerset A))) (=> (and (tptp.element B _let_1) (tptp.element C _let_1)) (= (tptp.subset_difference A B C) (tptp.set_difference B C))))) _let_6 (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.ordinal A) (tptp.ordinal B)) (tptp.ordinal_subset A A))) (forall ((A $$unsorted) (B $$unsorted)) (tptp.subset A A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.disjoint A B) (tptp.disjoint B A))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (= (tptp.in (tptp.ordered_pair A B) (tptp.cartesian_product2 C D)) (and (tptp.in A C) (tptp.in B D)))) _let_5 (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (not (and (= (tptp.unordered_pair A B) (tptp.unordered_pair C D)) (not (= A C)) (not (= A D))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (tptp.in A (tptp.relation_rng (tptp.relation_rng_restriction B C))) (and (tptp.in A B) (tptp.in A (tptp.relation_rng C)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_rng (tptp.relation_rng_restriction A B)) A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_rng_restriction A B) B))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_rng (tptp.relation_rng_restriction A B)) (tptp.relation_rng B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.subset A B) (and (tptp.subset (tptp.cartesian_product2 A C) (tptp.cartesian_product2 B C)) (tptp.subset (tptp.cartesian_product2 C A) (tptp.cartesian_product2 C B))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_rng (tptp.relation_rng_restriction A B)) (tptp.set_intersection2 (tptp.relation_rng B) A)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (=> (and (tptp.subset A B) (tptp.subset C D)) (tptp.subset (tptp.cartesian_product2 A C) (tptp.cartesian_product2 B D)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.subset A B) (= (tptp.set_union2 A B) B))) (forall ((A $$unsorted)) (exists ((B $$unsorted)) (and (tptp.in A B) (forall ((C $$unsorted) (D $$unsorted)) (=> (and (tptp.in C B) (tptp.subset D C)) (tptp.in D B))) (forall ((C $$unsorted)) (=> (tptp.in C B) (tptp.in (tptp.powerset C) B))) (forall ((C $$unsorted)) (not (and (tptp.subset C B) (not (tptp.are_equipotent C B)) (not (tptp.in C B)))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (tptp.relation_dom_restriction (tptp.relation_rng_restriction A C) B) (tptp.relation_rng_restriction A (tptp.relation_dom_restriction C B))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (tptp.in A (tptp.relation_image C B)) (exists ((D $$unsorted)) (and (tptp.in D (tptp.relation_dom C)) (tptp.in (tptp.ordered_pair D A) C) (tptp.in D B)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_image B A) (tptp.relation_rng B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (tptp.subset (tptp.relation_image B (tptp.relation_inverse_image B A)) A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_image B A) (tptp.relation_image B (tptp.set_intersection2 (tptp.relation_dom B) A))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (=> (tptp.subset A (tptp.relation_dom B)) (tptp.subset A (tptp.relation_inverse_image B (tptp.relation_image B A)))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (tptp.relation_image A (tptp.relation_dom A)) (tptp.relation_rng A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (=> (tptp.subset A (tptp.relation_rng B)) (= (tptp.relation_image B (tptp.relation_inverse_image B A)) A)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_rng (tptp.relation_composition A B)) (tptp.relation_image B (tptp.relation_rng A))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (tptp.in A (tptp.relation_inverse_image C B)) (exists ((D $$unsorted)) (and (tptp.in D (tptp.relation_rng C)) (tptp.in (tptp.ordered_pair A D) C) (tptp.in D B)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_inverse_image B A) (tptp.relation_dom B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (not (and (not (= A tptp.empty_set)) (tptp.subset A (tptp.relation_rng B)) (= (tptp.relation_inverse_image B A) tptp.empty_set))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (=> (tptp.subset A B) (tptp.subset (tptp.relation_inverse_image C A) (tptp.relation_inverse_image C B))))) (forall ((A $$unsorted) (B $$unsorted)) (tptp.subset (tptp.set_intersection2 A B) A)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.subset A C)) (tptp.subset A (tptp.set_intersection2 B C)))) (forall ((A $$unsorted)) (= (tptp.set_union2 A tptp.empty_set) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (tptp.element A B))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.subset B C)) (tptp.subset A C))) (= (tptp.powerset tptp.empty_set) (tptp.singleton tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (=> (tptp.in (tptp.ordered_pair A B) C) (and (tptp.in A (tptp.relation_dom C)) (tptp.in B (tptp.relation_rng C)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (forall ((C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (= (tptp.in A (tptp.relation_dom (tptp.relation_composition C B))) (and (tptp.in A (tptp.relation_dom C)) (tptp.in (tptp.apply C A) (tptp.relation_dom B)))))))) _let_4 (forall ((A $$unsorted)) (=> (tptp.relation A) (tptp.subset A (tptp.cartesian_product2 (tptp.relation_dom A) (tptp.relation_rng A))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (forall ((C $$unsorted)) (let ((_let_1 (tptp.relation_composition C B))) (=> (and (tptp.relation C) (tptp.function C)) (=> (tptp.in A (tptp.relation_dom _let_1)) (= (tptp.apply _let_1 A) (tptp.apply B (tptp.apply C A))))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (forall ((C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (=> (tptp.in A (tptp.relation_dom B)) (= (tptp.apply (tptp.relation_composition B C) A) (tptp.apply C (tptp.apply B A)))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.ordinal B) (=> (tptp.in A B) (tptp.ordinal A)))) (forall ((A $$unsorted)) (=> (tptp.ordinal A) (forall ((B $$unsorted)) (=> (tptp.ordinal B) (not (and (not (tptp.in A B)) (not (= A B)) (not (tptp.in B A)))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (=> (tptp.subset A B) (and (tptp.subset (tptp.relation_dom A) (tptp.relation_dom B)) (tptp.subset (tptp.relation_rng A) (tptp.relation_rng B)))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.subset A B) (tptp.subset (tptp.set_intersection2 A C) (tptp.set_intersection2 B C)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.subset A B) (= (tptp.set_intersection2 A B) A))) (forall ((A $$unsorted)) (= (tptp.set_intersection2 A tptp.empty_set) tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element A B) (or (tptp.empty B) (tptp.in A B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (forall ((C $$unsorted)) (= (tptp.in C A) (tptp.in C B))) (= A B))) (forall ((A $$unsorted)) (tptp.subset tptp.empty_set A)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.relation_field C))) (=> (tptp.relation C) (=> (tptp.in (tptp.ordered_pair A B) C) (and (tptp.in A _let_1) (tptp.in B _let_1)))))) (forall ((A $$unsorted)) (=> (forall ((B $$unsorted)) (=> (tptp.in B A) (and (tptp.ordinal B) (tptp.subset B A)))) (tptp.ordinal A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.ordinal B) (not (and (tptp.subset A B) (not (= A tptp.empty_set)) (forall ((C $$unsorted)) (=> (tptp.ordinal C) (not (and (tptp.in C A) (forall ((D $$unsorted)) (=> (tptp.ordinal D) (=> (tptp.in D A) (tptp.ordinal_subset C D)))))))))))) _let_3 (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.subset A B) (tptp.subset (tptp.set_difference A C) (tptp.set_difference B C)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (=> (= (tptp.ordered_pair A B) (tptp.ordered_pair C D)) (and (= A C) (= B D)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (= (= B (tptp.identity_relation A)) (and (= (tptp.relation_dom B) A) (forall ((C $$unsorted)) (=> (tptp.in C A) (= (tptp.apply B C) C))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in B A) (= (tptp.apply (tptp.identity_relation A) B) B))) (forall ((A $$unsorted) (B $$unsorted)) (tptp.subset (tptp.set_difference A B) A)) (forall ((A $$unsorted)) (let ((_let_1 (tptp.relation_inverse A))) (=> (tptp.relation A) (and (= (tptp.relation_rng A) (tptp.relation_dom _let_1)) (= (tptp.relation_dom A) (tptp.relation_rng _let_1)))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= (tptp.set_difference A B) tptp.empty_set) (tptp.subset A B))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.subset (tptp.singleton A) B) (tptp.in A B))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (tptp.subset (tptp.unordered_pair A B) C) (and (tptp.in A C) (tptp.in B C)))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_union2 A (tptp.set_difference B A)) (tptp.set_union2 A B))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.singleton B))) (= (tptp.subset A _let_1) (or (= A tptp.empty_set) (= A _let_1))))) (forall ((A $$unsorted)) (= (tptp.set_difference A tptp.empty_set) A)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (not (and (tptp.in A B) (tptp.in B C) (tptp.in C A)))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.element A (tptp.powerset B)) (tptp.subset A B))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.disjoint A B))) (and (not (and (not _let_1) (forall ((C $$unsorted)) (not (and (tptp.in C A) (tptp.in C B)))))) (not (and (exists ((C $$unsorted)) (and (tptp.in C A) (tptp.in C B))) _let_1))))) (forall ((A $$unsorted)) (=> (tptp.subset A tptp.empty_set) (= A tptp.empty_set))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_difference (tptp.set_union2 A B) B) (tptp.set_difference A B))) _let_2 _let_1 (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (forall ((C $$unsorted)) (=> (tptp.element C (tptp.powerset A)) (= (tptp.disjoint B C) (tptp.subset B (tptp.subset_complement A C))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_dom (tptp.relation_composition A B)) (tptp.relation_dom A)))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_rng (tptp.relation_composition A B)) (tptp.relation_rng B)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.subset A B) (= B (tptp.set_union2 A (tptp.set_difference B A))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (=> (tptp.subset (tptp.relation_rng A) (tptp.relation_dom B)) (= (tptp.relation_dom (tptp.relation_composition A B)) (tptp.relation_dom A))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (not (and (not (= B tptp.empty_set)) (= (tptp.complements_of_subsets A B) tptp.empty_set))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (= (tptp.set_union2 (tptp.singleton A) B) B))) (forall ((A $$unsorted)) (=> (tptp.relation A) (forall ((B $$unsorted)) (=> (tptp.relation B) (=> (tptp.subset (tptp.relation_dom A) (tptp.relation_rng B)) (= (tptp.relation_rng (tptp.relation_composition B A)) (tptp.relation_rng A))))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (=> (not (= B tptp.empty_set)) (= (tptp.subset_difference A (tptp.cast_to_subset A) (tptp.union_of_subsets A B)) (tptp.meet_of_subsets A (tptp.complements_of_subsets A B)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element B (tptp.powerset (tptp.powerset A))) (=> (not (= B tptp.empty_set)) (= (tptp.union_of_subsets A (tptp.complements_of_subsets A B)) (tptp.subset_difference A (tptp.cast_to_subset A) (tptp.meet_of_subsets A B)))))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_difference A (tptp.set_difference A B)) (tptp.set_intersection2 A B))) (forall ((A $$unsorted)) (= (tptp.set_difference tptp.empty_set A) tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.in A B) (tptp.element B (tptp.powerset C))) (tptp.element A C))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.disjoint A B))) (and (not (and (not _let_1) (forall ((C $$unsorted)) (not (tptp.in C (tptp.set_intersection2 A B)))))) (not (and (exists ((C $$unsorted)) (tptp.in C (tptp.set_intersection2 A B))) _let_1))))) (forall ((A $$unsorted)) (=> (not (= A tptp.empty_set)) (forall ((B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (forall ((C $$unsorted)) (=> (tptp.element C A) (=> (not (tptp.in C B)) (tptp.in C (tptp.subset_complement A B))))))))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (=> (tptp.one_to_one A) (forall ((B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (= (= B (tptp.function_inverse A)) (and (= (tptp.relation_dom B) (tptp.relation_rng A)) (forall ((C $$unsorted) (D $$unsorted)) (let ((_let_1 (and (tptp.in C (tptp.relation_rng A)) (= D (tptp.apply B C))))) (let ((_let_2 (and (tptp.in D (tptp.relation_dom A)) (= C (tptp.apply A D))))) (and (=> _let_1 _let_2) (=> _let_2 _let_1)))))))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.element C (tptp.powerset A)) (not (and (tptp.in B (tptp.subset_complement A C)) (tptp.in B C))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.function_inverse A))) (=> (and (tptp.relation A) (tptp.function A)) (=> (tptp.one_to_one A) (and (= (tptp.relation_rng A) (tptp.relation_dom _let_1)) (= (tptp.relation_dom A) (tptp.relation_rng _let_1))))))) (forall ((A $$unsorted)) (=> (tptp.relation A) (=> (forall ((B $$unsorted) (C $$unsorted)) (not (tptp.in (tptp.ordered_pair B C) A))) (= A tptp.empty_set)))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.function_inverse B))) (=> (and (tptp.relation B) (tptp.function B)) (=> (and (tptp.one_to_one B) (tptp.in A (tptp.relation_rng B))) (and (= A (tptp.apply B (tptp.apply _let_1 A))) (= A (tptp.apply (tptp.relation_composition _let_1 B) A))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (not (and (tptp.in A B) (tptp.element B (tptp.powerset C)) (tptp.empty C)))) (and (= (tptp.relation_dom tptp.empty_set) tptp.empty_set) (= (tptp.relation_rng tptp.empty_set) tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.subset A B) (tptp.proper_subset B A)))) (forall ((A $$unsorted)) (=> (and (tptp.relation A) (tptp.function A)) (=> (tptp.one_to_one A) (tptp.one_to_one (tptp.function_inverse A))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.disjoint B C)) (tptp.disjoint A C))) (forall ((A $$unsorted)) (=> (tptp.relation A) (=> (or (= (tptp.relation_dom A) tptp.empty_set) (= (tptp.relation_rng A) tptp.empty_set)) (= A tptp.empty_set)))) (forall ((A $$unsorted)) (=> (tptp.relation A) (= (= (tptp.relation_dom A) tptp.empty_set) (= (tptp.relation_rng A) tptp.empty_set)))) (forall ((A $$unsorted) (B $$unsorted)) (= (= (tptp.set_difference A (tptp.singleton B)) A) (not (tptp.in B A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation B) (tptp.function B)) (forall ((C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (= (= B (tptp.relation_dom_restriction C A)) (and (= (tptp.relation_dom B) (tptp.set_intersection2 (tptp.relation_dom C) A)) (forall ((D $$unsorted)) (=> (tptp.in D (tptp.relation_dom B)) (= (tptp.apply B D) (tptp.apply C D)))))))))) (forall ((A $$unsorted)) (= (tptp.unordered_pair A A) (tptp.singleton A))) (forall ((A $$unsorted)) (=> (tptp.empty A) (= A tptp.empty_set))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.subset (tptp.singleton A) (tptp.singleton B)) (= A B))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (let ((_let_1 (tptp.relation_dom_restriction C A))) (=> (and (tptp.relation C) (tptp.function C)) (=> (tptp.in B (tptp.relation_dom _let_1)) (= (tptp.apply _let_1 B) (tptp.apply C B)))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.identity_relation A))) (and (= (tptp.relation_dom _let_1) A) (= (tptp.relation_rng _let_1) A)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (=> (tptp.in B A) (= (tptp.apply (tptp.relation_dom_restriction C A) B) (tptp.apply C B))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted) (D $$unsorted)) (let ((_let_1 (tptp.ordered_pair A B))) (=> (tptp.relation D) (= (tptp.in _let_1 (tptp.relation_composition (tptp.identity_relation C) D)) (and (tptp.in A C) (tptp.in _let_1 D)))))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.in A B) (tptp.empty B)))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.in A B) (forall ((C $$unsorted)) (not (and (tptp.in C B) (forall ((D $$unsorted)) (not (and (tptp.in D B) (tptp.in D C)))))))))) (forall ((A $$unsorted) (B $$unsorted)) (tptp.subset A (tptp.set_union2 A B))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.disjoint A B) (= (tptp.set_difference A B) A))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (tptp.relation C) (= (tptp.in A (tptp.relation_dom (tptp.relation_dom_restriction C B))) (and (tptp.in A B) (tptp.in A (tptp.relation_dom C)))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_dom_restriction B A) B))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.empty A) (not (= A B)) (tptp.empty B)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.relation C) (tptp.function C)) (= (tptp.in (tptp.ordered_pair A B) C) (and (tptp.in A (tptp.relation_dom C)) (= B (tptp.apply C A)))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.subset C B)) (tptp.subset (tptp.set_union2 A C) B))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (= (tptp.singleton A) (tptp.unordered_pair B C)) (= A B))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_dom (tptp.relation_dom_restriction B A)) (tptp.set_intersection2 (tptp.relation_dom B) A)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (tptp.subset A (tptp.union B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (= (tptp.relation_dom_restriction B A) (tptp.relation_composition (tptp.identity_relation A) B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.relation B) (tptp.subset (tptp.relation_rng (tptp.relation_dom_restriction B A)) (tptp.relation_rng B)))) (forall ((A $$unsorted)) (= (tptp.union (tptp.powerset A)) A)) (forall ((A $$unsorted)) (exists ((B $$unsorted)) (and (tptp.in A B) (forall ((C $$unsorted) (D $$unsorted)) (=> (and (tptp.in C B) (tptp.subset D C)) (tptp.in D B))) (forall ((C $$unsorted)) (not (and (tptp.in C B) (forall ((D $$unsorted)) (not (and (tptp.in D B) (forall ((E $$unsorted)) (=> (tptp.subset E C) (tptp.in E D))))))))) (forall ((C $$unsorted)) (not (and (tptp.subset C B) (not (tptp.are_equipotent C B)) (not (tptp.in C B)))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (= (tptp.singleton A) (tptp.unordered_pair B C)) (= B C))) true))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 70.39/70.59  )
% 70.39/70.59  % SZS output end Proof for SEU238+2
% 70.39/70.59  % cvc5---1.0.5 exiting
% 70.39/70.59  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------