TSTP Solution File: SEU238+1 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SEU238+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 08:48:01 EDT 2022

% Result   : Theorem 4.44s 1.85s
% Output   : Proof 6.97s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.14  % Problem  : SEU238+1 : TPTP v8.1.0. Released v3.3.0.
% 0.08/0.14  % Command  : ePrincess-casc -timeout=%d %s
% 0.14/0.36  % Computer : n013.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit : 300
% 0.14/0.36  % WCLimit  : 600
% 0.14/0.36  % DateTime : Sat Jun 18 20:55:44 EDT 2022
% 0.14/0.36  % CPUTime  : 
% 0.66/0.64          ____       _                          
% 0.66/0.64    ___  / __ \_____(_)___  ________  __________
% 0.66/0.64   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.66/0.64  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.66/0.64  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.66/0.64  
% 0.66/0.64  A Theorem Prover for First-Order Logic
% 0.66/0.64  (ePrincess v.1.0)
% 0.66/0.64  
% 0.66/0.64  (c) Philipp Rümmer, 2009-2015
% 0.66/0.64  (c) Peter Backeman, 2014-2015
% 0.66/0.64  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.66/0.64  Free software under GNU Lesser General Public License (LGPL).
% 0.66/0.64  Bug reports to peter@backeman.se
% 0.66/0.64  
% 0.66/0.64  For more information, visit http://user.uu.se/~petba168/breu/
% 0.66/0.64  
% 0.66/0.64  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.79/0.70  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.66/1.05  Prover 0: Preprocessing ...
% 2.21/1.30  Prover 0: Warning: ignoring some quantifiers
% 2.50/1.33  Prover 0: Constructing countermodel ...
% 4.44/1.85  Prover 0: proved (1143ms)
% 4.44/1.85  
% 4.44/1.85  No countermodel exists, formula is valid
% 4.44/1.85  % SZS status Theorem for theBenchmark
% 4.44/1.85  
% 4.44/1.85  Generating proof ... Warning: ignoring some quantifiers
% 6.59/2.33  found it (size 41)
% 6.59/2.33  
% 6.59/2.33  % SZS output start Proof for theBenchmark
% 6.59/2.33  Assumed formulas after preprocessing and simplification: 
% 6.59/2.33  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] :  ? [v8] :  ? [v9] :  ? [v10] :  ? [v11] :  ? [v12] :  ? [v13] :  ? [v14] : (relation_empty_yielding(v4) & relation_empty_yielding(v3) & relation_empty_yielding(empty_set) & one_to_one(v9) & one_to_one(v6) & one_to_one(empty_set) & relation(v14) & relation(v12) & relation(v10) & relation(v9) & relation(v8) & relation(v6) & relation(v4) & relation(v3) & relation(empty_set) & epsilon_connected(v13) & epsilon_connected(v9) & epsilon_connected(v5) & epsilon_connected(empty_set) & epsilon_transitive(v13) & epsilon_transitive(v9) & epsilon_transitive(v5) & epsilon_transitive(empty_set) & ordinal(v13) & ordinal(v9) & ordinal(v5) & ordinal(v0) & ordinal(empty_set) & function(v14) & function(v10) & function(v9) & function(v6) & function(v3) & function(empty_set) & empty(v12) & empty(v11) & empty(v10) & empty(v9) & empty(empty_set) &  ~ empty(v8) &  ~ empty(v7) &  ~ empty(v5) &  ! [v15] :  ! [v16] :  ! [v17] :  ! [v18] : (v16 = v15 |  ~ (set_union2(v18, v17) = v16) |  ~ (set_union2(v18, v17) = v15)) &  ! [v15] :  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (powerset(v17) = v18) |  ~ element(v16, v18) |  ~ empty(v17) |  ~ in(v15, v16)) &  ! [v15] :  ! [v16] :  ! [v17] :  ! [v18] : ( ~ (powerset(v17) = v18) |  ~ element(v16, v18) |  ~ in(v15, v16) | element(v15, v17)) &  ! [v15] :  ! [v16] :  ! [v17] : (v16 = v15 |  ~ (powerset(v17) = v16) |  ~ (powerset(v17) = v15)) &  ! [v15] :  ! [v16] :  ! [v17] : (v16 = v15 |  ~ (singleton(v17) = v16) |  ~ (singleton(v17) = v15)) &  ! [v15] :  ! [v16] :  ! [v17] : (v16 = v15 |  ~ (succ(v17) = v16) |  ~ (succ(v17) = v15)) &  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (powerset(v16) = v17) |  ~ element(v15, v17) | subset(v15, v16)) &  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (powerset(v16) = v17) |  ~ subset(v15, v16) | element(v15, v17)) &  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (singleton(v15) = v16) |  ~ (set_union2(v15, v16) = v17) | succ(v15) = v17) &  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (succ(v16) = v17) |  ~ being_limit_ordinal(v15) |  ~ ordinal(v16) |  ~ ordinal(v15) |  ~ in(v16, v15) | in(v17, v15)) &  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (succ(v15) = v16) |  ~ ordinal_subset(v16, v17) |  ~ ordinal(v17) |  ~ ordinal(v15) | in(v15, v17)) &  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (succ(v15) = v16) |  ~ ordinal(v17) |  ~ ordinal(v15) |  ~ in(v15, v17) | ordinal_subset(v16, v17)) &  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (set_union2(v16, v15) = v17) |  ~ empty(v17) | empty(v15)) &  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (set_union2(v16, v15) = v17) | set_union2(v15, v16) = v17) &  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (set_union2(v15, v16) = v17) |  ~ relation(v16) |  ~ relation(v15) | relation(v17)) &  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (set_union2(v15, v16) = v17) |  ~ empty(v17) | empty(v15)) &  ! [v15] :  ! [v16] :  ! [v17] : ( ~ (set_union2(v15, v16) = v17) | set_union2(v16, v15) = v17) &  ! [v15] :  ! [v16] : (v16 = v15 |  ~ (set_union2(v15, v15) = v16)) &  ! [v15] :  ! [v16] : (v16 = v15 |  ~ (set_union2(v15, empty_set) = v16)) &  ! [v15] :  ! [v16] : (v16 = v15 |  ~ subset(v15, v16) | proper_subset(v15, v16)) &  ! [v15] :  ! [v16] : (v16 = v15 |  ~ empty(v16) |  ~ empty(v15)) &  ! [v15] :  ! [v16] : ( ~ (succ(v15) = v16) |  ~ ordinal(v15) |  ~ empty(v16)) &  ! [v15] :  ! [v16] : ( ~ (succ(v15) = v16) |  ~ ordinal(v15) | epsilon_connected(v16)) &  ! [v15] :  ! [v16] : ( ~ (succ(v15) = v16) |  ~ ordinal(v15) | epsilon_transitive(v16)) &  ! [v15] :  ! [v16] : ( ~ (succ(v15) = v16) |  ~ ordinal(v15) | ordinal(v16)) &  ! [v15] :  ! [v16] : ( ~ (succ(v15) = v16) |  ~ empty(v16)) &  ! [v15] :  ! [v16] : ( ~ (succ(v15) = v16) | in(v15, v16)) &  ! [v15] :  ! [v16] : ( ~ (succ(v15) = v16) |  ? [v17] : (singleton(v15) = v17 & set_union2(v15, v17) = v16)) &  ! [v15] :  ! [v16] : ( ~ element(v15, v16) | empty(v16) | in(v15, v16)) &  ! [v15] :  ! [v16] : ( ~ subset(v15, v16) |  ~ ordinal(v16) |  ~ ordinal(v15) | ordinal_subset(v15, v16)) &  ! [v15] :  ! [v16] : ( ~ ordinal_subset(v15, v16) |  ~ ordinal(v16) |  ~ ordinal(v15) | subset(v15, v16)) &  ! [v15] :  ! [v16] : ( ~ epsilon_transitive(v15) |  ~ ordinal(v16) |  ~ proper_subset(v15, v16) | in(v15, v16)) &  ! [v15] :  ! [v16] : ( ~ ordinal(v16) |  ~ ordinal(v15) | ordinal_subset(v16, v15) | ordinal_subset(v15, v16)) &  ! [v15] :  ! [v16] : ( ~ ordinal(v16) |  ~ ordinal(v15) | ordinal_subset(v15, v15)) &  ! [v15] :  ! [v16] : ( ~ empty(v16) |  ~ in(v15, v16)) &  ! [v15] :  ! [v16] : ( ~ proper_subset(v16, v15) |  ~ proper_subset(v15, v16)) &  ! [v15] :  ! [v16] : ( ~ proper_subset(v15, v16) | subset(v15, v16)) &  ! [v15] :  ! [v16] : ( ~ in(v16, v15) |  ~ in(v15, v16)) &  ! [v15] :  ! [v16] : ( ~ in(v15, v16) | element(v15, v16)) &  ! [v15] : (v15 = empty_set |  ~ empty(v15)) &  ! [v15] : ( ~ relation(v15) |  ~ function(v15) |  ~ empty(v15) | one_to_one(v15)) &  ! [v15] : ( ~ epsilon_connected(v15) |  ~ epsilon_transitive(v15) | ordinal(v15)) &  ! [v15] : ( ~ ordinal(v15) | being_limit_ordinal(v15) |  ? [v16] :  ? [v17] : (succ(v16) = v17 & ordinal(v16) & in(v16, v15) &  ~ in(v17, v15))) &  ! [v15] : ( ~ ordinal(v15) | epsilon_connected(v15)) &  ! [v15] : ( ~ ordinal(v15) | epsilon_transitive(v15)) &  ! [v15] : ( ~ empty(v15) | relation(v15)) &  ! [v15] : ( ~ empty(v15) | epsilon_connected(v15)) &  ! [v15] : ( ~ empty(v15) | epsilon_transitive(v15)) &  ! [v15] : ( ~ empty(v15) | ordinal(v15)) &  ! [v15] : ( ~ empty(v15) | function(v15)) &  ! [v15] :  ~ proper_subset(v15, v15) &  ? [v15] :  ? [v16] : element(v16, v15) &  ? [v15] : subset(v15, v15) & ((v2 = v0 & succ(v1) = v0 & being_limit_ordinal(v0) & ordinal(v1)) | ( ~ being_limit_ordinal(v0) &  ! [v15] : ( ~ ordinal(v15) |  ? [v16] : ( ~ (v16 = v0) & succ(v15) = v16)))))
% 6.97/2.38  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9, all_0_10_10, all_0_11_11, all_0_12_12, all_0_13_13, all_0_14_14 yields:
% 6.97/2.38  | (1) relation_empty_yielding(all_0_10_10) & relation_empty_yielding(all_0_11_11) & relation_empty_yielding(empty_set) & one_to_one(all_0_5_5) & one_to_one(all_0_8_8) & one_to_one(empty_set) & relation(all_0_0_0) & relation(all_0_2_2) & relation(all_0_4_4) & relation(all_0_5_5) & relation(all_0_6_6) & relation(all_0_8_8) & relation(all_0_10_10) & relation(all_0_11_11) & relation(empty_set) & epsilon_connected(all_0_1_1) & epsilon_connected(all_0_5_5) & epsilon_connected(all_0_9_9) & epsilon_connected(empty_set) & epsilon_transitive(all_0_1_1) & epsilon_transitive(all_0_5_5) & epsilon_transitive(all_0_9_9) & epsilon_transitive(empty_set) & ordinal(all_0_1_1) & ordinal(all_0_5_5) & ordinal(all_0_9_9) & ordinal(all_0_14_14) & ordinal(empty_set) & function(all_0_0_0) & function(all_0_4_4) & function(all_0_5_5) & function(all_0_8_8) & function(all_0_11_11) & function(empty_set) & empty(all_0_2_2) & empty(all_0_3_3) & empty(all_0_4_4) & empty(all_0_5_5) & empty(empty_set) &  ~ empty(all_0_6_6) &  ~ empty(all_0_7_7) &  ~ empty(all_0_9_9) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (set_union2(v3, v2) = v1) |  ~ (set_union2(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ empty(v2) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ in(v0, v1) | element(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (powerset(v2) = v1) |  ~ (powerset(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (succ(v2) = v1) |  ~ (succ(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ element(v0, v2) | subset(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ subset(v0, v1) | element(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (singleton(v0) = v1) |  ~ (set_union2(v0, v1) = v2) | succ(v0) = v2) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v1) = v2) |  ~ being_limit_ordinal(v0) |  ~ ordinal(v1) |  ~ ordinal(v0) |  ~ in(v1, v0) | in(v2, v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v0) = v1) |  ~ ordinal_subset(v1, v2) |  ~ ordinal(v2) |  ~ ordinal(v0) | in(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v0) = v1) |  ~ ordinal(v2) |  ~ ordinal(v0) |  ~ in(v0, v2) | ordinal_subset(v1, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v1, v0) = v2) |  ~ empty(v2) | empty(v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v1, v0) = v2) | set_union2(v0, v1) = v2) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) |  ~ relation(v1) |  ~ relation(v0) | relation(v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) |  ~ empty(v2) | empty(v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) | set_union2(v1, v0) = v2) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (set_union2(v0, v0) = v1)) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (set_union2(v0, empty_set) = v1)) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ subset(v0, v1) | proper_subset(v0, v1)) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ empty(v1) |  ~ empty(v0)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) |  ~ empty(v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | epsilon_connected(v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | epsilon_transitive(v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | ordinal(v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ empty(v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) | in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ? [v2] : (singleton(v0) = v2 & set_union2(v0, v2) = v1)) &  ! [v0] :  ! [v1] : ( ~ element(v0, v1) | empty(v1) | in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ subset(v0, v1) |  ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ ordinal_subset(v0, v1) |  ~ ordinal(v1) |  ~ ordinal(v0) | subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ epsilon_transitive(v0) |  ~ ordinal(v1) |  ~ proper_subset(v0, v1) | in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v1, v0) | ordinal_subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v0, v0)) &  ! [v0] :  ! [v1] : ( ~ empty(v1) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ proper_subset(v1, v0) |  ~ proper_subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ proper_subset(v0, v1) | subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ in(v1, v0) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ in(v0, v1) | element(v0, v1)) &  ! [v0] : (v0 = empty_set |  ~ empty(v0)) &  ! [v0] : ( ~ relation(v0) |  ~ function(v0) |  ~ empty(v0) | one_to_one(v0)) &  ! [v0] : ( ~ epsilon_connected(v0) |  ~ epsilon_transitive(v0) | ordinal(v0)) &  ! [v0] : ( ~ ordinal(v0) | being_limit_ordinal(v0) |  ? [v1] :  ? [v2] : (succ(v1) = v2 & ordinal(v1) & in(v1, v0) &  ~ in(v2, v0))) &  ! [v0] : ( ~ ordinal(v0) | epsilon_connected(v0)) &  ! [v0] : ( ~ ordinal(v0) | epsilon_transitive(v0)) &  ! [v0] : ( ~ empty(v0) | relation(v0)) &  ! [v0] : ( ~ empty(v0) | epsilon_connected(v0)) &  ! [v0] : ( ~ empty(v0) | epsilon_transitive(v0)) &  ! [v0] : ( ~ empty(v0) | ordinal(v0)) &  ! [v0] : ( ~ empty(v0) | function(v0)) &  ! [v0] :  ~ proper_subset(v0, v0) &  ? [v0] :  ? [v1] : element(v1, v0) &  ? [v0] : subset(v0, v0) & ((all_0_12_12 = all_0_14_14 & succ(all_0_13_13) = all_0_14_14 & being_limit_ordinal(all_0_14_14) & ordinal(all_0_13_13)) | ( ~ being_limit_ordinal(all_0_14_14) &  ! [v0] : ( ~ ordinal(v0) |  ? [v1] : ( ~ (v1 = all_0_14_14) & succ(v0) = v1))))
% 6.97/2.41  |
% 6.97/2.41  | Applying alpha-rule on (1) yields:
% 6.97/2.41  | (2)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ empty(v1))
% 6.97/2.41  | (3) one_to_one(all_0_8_8)
% 6.97/2.41  | (4) relation(all_0_11_11)
% 6.97/2.41  | (5) relation(all_0_6_6)
% 6.97/2.41  | (6)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ subset(v0, v1) | proper_subset(v0, v1))
% 6.97/2.41  | (7)  ! [v0] :  ! [v1] : ( ~ epsilon_transitive(v0) |  ~ ordinal(v1) |  ~ proper_subset(v0, v1) | in(v0, v1))
% 6.97/2.41  | (8) ordinal(all_0_9_9)
% 6.97/2.41  | (9)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ subset(v0, v1) | element(v0, v2))
% 6.97/2.41  | (10)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ element(v0, v2) | subset(v0, v1))
% 6.97/2.41  | (11) ordinal(empty_set)
% 6.97/2.41  | (12)  ! [v0] :  ! [v1] : ( ~ element(v0, v1) | empty(v1) | in(v0, v1))
% 6.97/2.41  | (13)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (powerset(v2) = v1) |  ~ (powerset(v2) = v0))
% 6.97/2.41  | (14)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ empty(v2) |  ~ in(v0, v1))
% 6.97/2.41  | (15)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v1) = v2) |  ~ being_limit_ordinal(v0) |  ~ ordinal(v1) |  ~ ordinal(v0) |  ~ in(v1, v0) | in(v2, v0))
% 6.97/2.41  | (16)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | ordinal(v1))
% 6.97/2.41  | (17) function(all_0_11_11)
% 6.97/2.41  | (18) empty(all_0_3_3)
% 6.97/2.41  | (19) relation_empty_yielding(all_0_10_10)
% 6.97/2.41  | (20)  ! [v0] :  ! [v1] : ( ~ empty(v1) |  ~ in(v0, v1))
% 6.97/2.41  | (21) relation(all_0_4_4)
% 6.97/2.41  | (22) relation(all_0_0_0)
% 6.97/2.41  | (23) empty(empty_set)
% 6.97/2.41  | (24)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (set_union2(v0, empty_set) = v1))
% 6.97/2.42  | (25) epsilon_connected(all_0_9_9)
% 6.97/2.42  | (26)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (set_union2(v3, v2) = v1) |  ~ (set_union2(v3, v2) = v0))
% 6.97/2.42  | (27) ordinal(all_0_1_1)
% 6.97/2.42  | (28)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v1, v0) = v2) |  ~ empty(v2) | empty(v0))
% 6.97/2.42  | (29)  ! [v0] : ( ~ empty(v0) | relation(v0))
% 6.97/2.42  | (30) relation_empty_yielding(all_0_11_11)
% 6.97/2.42  | (31) empty(all_0_4_4)
% 6.97/2.42  | (32)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ in(v0, v1) | element(v0, v2))
% 6.97/2.42  | (33)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ empty(v1) |  ~ empty(v0))
% 6.97/2.42  | (34)  ! [v0] : ( ~ empty(v0) | epsilon_transitive(v0))
% 6.97/2.42  | (35)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) |  ~ empty(v2) | empty(v0))
% 6.97/2.42  | (36)  ! [v0] : ( ~ ordinal(v0) | epsilon_connected(v0))
% 6.97/2.42  | (37)  ! [v0] :  ! [v1] : ( ~ in(v1, v0) |  ~ in(v0, v1))
% 6.97/2.42  | (38)  ~ empty(all_0_9_9)
% 6.97/2.42  | (39) function(all_0_0_0)
% 6.97/2.42  | (40)  ! [v0] : (v0 = empty_set |  ~ empty(v0))
% 6.97/2.42  | (41)  ! [v0] : ( ~ empty(v0) | ordinal(v0))
% 6.97/2.42  | (42) function(empty_set)
% 6.97/2.42  | (43) epsilon_transitive(all_0_1_1)
% 6.97/2.42  | (44)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) |  ~ relation(v1) |  ~ relation(v0) | relation(v2))
% 6.97/2.42  | (45) relation(all_0_10_10)
% 6.97/2.42  | (46) function(all_0_8_8)
% 6.97/2.42  | (47)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (singleton(v0) = v1) |  ~ (set_union2(v0, v1) = v2) | succ(v0) = v2)
% 6.97/2.42  | (48)  ! [v0] :  ! [v1] : ( ~ ordinal_subset(v0, v1) |  ~ ordinal(v1) |  ~ ordinal(v0) | subset(v0, v1))
% 6.97/2.42  | (49)  ! [v0] : ( ~ empty(v0) | epsilon_connected(v0))
% 6.97/2.42  | (50) ordinal(all_0_14_14)
% 6.97/2.42  | (51)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v0, v1) = v2) | set_union2(v1, v0) = v2)
% 6.97/2.42  | (52)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (set_union2(v1, v0) = v2) | set_union2(v0, v1) = v2)
% 6.97/2.43  | (53) function(all_0_5_5)
% 6.97/2.43  | (54) epsilon_connected(empty_set)
% 6.97/2.43  | (55)  ! [v0] :  ! [v1] : ( ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v0, v0))
% 6.97/2.43  | (56) epsilon_transitive(empty_set)
% 6.97/2.43  | (57)  ! [v0] : ( ~ relation(v0) |  ~ function(v0) |  ~ empty(v0) | one_to_one(v0))
% 6.97/2.43  | (58) relation(all_0_5_5)
% 6.97/2.43  | (59)  ! [v0] :  ! [v1] : ( ~ proper_subset(v1, v0) |  ~ proper_subset(v0, v1))
% 6.97/2.43  | (60)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ (set_union2(v0, v0) = v1))
% 6.97/2.43  | (61) epsilon_transitive(all_0_5_5)
% 6.97/2.43  | (62)  ! [v0] : ( ~ ordinal(v0) | epsilon_transitive(v0))
% 6.97/2.43  | (63)  ! [v0] : ( ~ epsilon_connected(v0) |  ~ epsilon_transitive(v0) | ordinal(v0))
% 6.97/2.43  | (64) empty(all_0_5_5)
% 6.97/2.43  | (65) one_to_one(all_0_5_5)
% 6.97/2.43  | (66)  ! [v0] :  ! [v1] : ( ~ in(v0, v1) | element(v0, v1))
% 6.97/2.43  | (67)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (succ(v2) = v1) |  ~ (succ(v2) = v0))
% 6.97/2.43  | (68)  ! [v0] :  ~ proper_subset(v0, v0)
% 6.97/2.43  | (69)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v0) = v1) |  ~ ordinal(v2) |  ~ ordinal(v0) |  ~ in(v0, v2) | ordinal_subset(v1, v2))
% 6.97/2.43  | (70)  ~ empty(all_0_6_6)
% 6.97/2.43  | (71) ordinal(all_0_5_5)
% 6.97/2.43  | (72)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | epsilon_connected(v1))
% 6.97/2.43  | (73)  ! [v0] :  ! [v1] : ( ~ subset(v0, v1) |  ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v0, v1))
% 6.97/2.43  | (74)  ! [v0] :  ! [v1] : ( ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v1, v0) | ordinal_subset(v0, v1))
% 6.97/2.43  | (75)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) |  ~ empty(v1))
% 6.97/2.43  | (76)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (succ(v0) = v1) |  ~ ordinal_subset(v1, v2) |  ~ ordinal(v2) |  ~ ordinal(v0) | in(v0, v2))
% 6.97/2.44  | (77) one_to_one(empty_set)
% 6.97/2.44  | (78) relation_empty_yielding(empty_set)
% 6.97/2.44  | (79)  ! [v0] : ( ~ ordinal(v0) | being_limit_ordinal(v0) |  ? [v1] :  ? [v2] : (succ(v1) = v2 & ordinal(v1) & in(v1, v0) &  ~ in(v2, v0)))
% 6.97/2.44  | (80)  ! [v0] : ( ~ empty(v0) | function(v0))
% 6.97/2.44  | (81)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ~ ordinal(v0) | epsilon_transitive(v1))
% 6.97/2.44  | (82) relation(all_0_2_2)
% 6.97/2.44  | (83) empty(all_0_2_2)
% 6.97/2.44  | (84) relation(empty_set)
% 6.97/2.44  | (85) relation(all_0_8_8)
% 6.97/2.44  | (86) function(all_0_4_4)
% 6.97/2.44  | (87)  ~ empty(all_0_7_7)
% 6.97/2.44  | (88) epsilon_connected(all_0_1_1)
% 6.97/2.44  | (89)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) |  ? [v2] : (singleton(v0) = v2 & set_union2(v0, v2) = v1))
% 6.97/2.44  | (90)  ! [v0] :  ! [v1] : ( ~ proper_subset(v0, v1) | subset(v0, v1))
% 6.97/2.44  | (91)  ? [v0] : subset(v0, v0)
% 6.97/2.44  | (92) epsilon_connected(all_0_5_5)
% 6.97/2.44  | (93)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 6.97/2.44  | (94)  ? [v0] :  ? [v1] : element(v1, v0)
% 6.97/2.44  | (95) (all_0_12_12 = all_0_14_14 & succ(all_0_13_13) = all_0_14_14 & being_limit_ordinal(all_0_14_14) & ordinal(all_0_13_13)) | ( ~ being_limit_ordinal(all_0_14_14) &  ! [v0] : ( ~ ordinal(v0) |  ? [v1] : ( ~ (v1 = all_0_14_14) & succ(v0) = v1)))
% 6.97/2.44  | (96) epsilon_transitive(all_0_9_9)
% 6.97/2.44  | (97)  ! [v0] :  ! [v1] : ( ~ (succ(v0) = v1) | in(v0, v1))
% 6.97/2.44  |
% 6.97/2.44  | Instantiating formula (33) with all_0_3_3, all_0_2_2 and discharging atoms empty(all_0_2_2), empty(all_0_3_3), yields:
% 6.97/2.44  | (98) all_0_2_2 = all_0_3_3
% 6.97/2.44  |
% 6.97/2.44  | Instantiating formula (33) with all_0_4_4, all_0_2_2 and discharging atoms empty(all_0_2_2), empty(all_0_4_4), yields:
% 6.97/2.44  | (99) all_0_2_2 = all_0_4_4
% 6.97/2.44  |
% 6.97/2.44  | Instantiating formula (33) with all_0_5_5, all_0_3_3 and discharging atoms empty(all_0_3_3), empty(all_0_5_5), yields:
% 6.97/2.45  | (100) all_0_3_3 = all_0_5_5
% 6.97/2.45  |
% 6.97/2.45  | Instantiating formula (33) with empty_set, all_0_3_3 and discharging atoms empty(all_0_3_3), empty(empty_set), yields:
% 6.97/2.45  | (101) all_0_3_3 = empty_set
% 6.97/2.45  |
% 6.97/2.45  | Combining equations (98,99) yields a new equation:
% 6.97/2.45  | (102) all_0_3_3 = all_0_4_4
% 6.97/2.45  |
% 6.97/2.45  | Simplifying 102 yields:
% 6.97/2.45  | (103) all_0_3_3 = all_0_4_4
% 6.97/2.45  |
% 6.97/2.45  | Combining equations (101,103) yields a new equation:
% 6.97/2.45  | (104) all_0_4_4 = empty_set
% 6.97/2.45  |
% 6.97/2.45  | Combining equations (100,103) yields a new equation:
% 6.97/2.45  | (105) all_0_4_4 = all_0_5_5
% 6.97/2.45  |
% 6.97/2.45  | Combining equations (104,105) yields a new equation:
% 6.97/2.45  | (106) all_0_5_5 = empty_set
% 6.97/2.45  |
% 6.97/2.45  | From (106) and (71) follows:
% 6.97/2.45  | (11) ordinal(empty_set)
% 6.97/2.45  |
% 6.97/2.45  | Instantiating formula (79) with all_0_14_14 and discharging atoms ordinal(all_0_14_14), yields:
% 6.97/2.45  | (108) being_limit_ordinal(all_0_14_14) |  ? [v0] :  ? [v1] : (succ(v0) = v1 & ordinal(v0) & in(v0, all_0_14_14) &  ~ in(v1, all_0_14_14))
% 6.97/2.45  |
% 6.97/2.45  | Instantiating formula (55) with empty_set, all_0_14_14 and discharging atoms ordinal(all_0_14_14), ordinal(empty_set), yields:
% 6.97/2.45  | (109) ordinal_subset(all_0_14_14, all_0_14_14)
% 6.97/2.45  |
% 6.97/2.45  +-Applying beta-rule and splitting (95), into two cases.
% 6.97/2.45  |-Branch one:
% 6.97/2.45  | (110) all_0_12_12 = all_0_14_14 & succ(all_0_13_13) = all_0_14_14 & being_limit_ordinal(all_0_14_14) & ordinal(all_0_13_13)
% 6.97/2.45  |
% 6.97/2.45  	| Applying alpha-rule on (110) yields:
% 6.97/2.45  	| (111) all_0_12_12 = all_0_14_14
% 6.97/2.45  	| (112) succ(all_0_13_13) = all_0_14_14
% 6.97/2.45  	| (113) being_limit_ordinal(all_0_14_14)
% 6.97/2.45  	| (114) ordinal(all_0_13_13)
% 6.97/2.45  	|
% 6.97/2.45  	| Instantiating formula (76) with all_0_14_14, all_0_14_14, all_0_13_13 and discharging atoms succ(all_0_13_13) = all_0_14_14, ordinal_subset(all_0_14_14, all_0_14_14), ordinal(all_0_13_13), ordinal(all_0_14_14), yields:
% 6.97/2.45  	| (115) in(all_0_13_13, all_0_14_14)
% 6.97/2.45  	|
% 6.97/2.45  	| Instantiating formula (15) with all_0_14_14, all_0_13_13, all_0_14_14 and discharging atoms succ(all_0_13_13) = all_0_14_14, being_limit_ordinal(all_0_14_14), ordinal(all_0_13_13), ordinal(all_0_14_14), in(all_0_13_13, all_0_14_14), yields:
% 6.97/2.45  	| (116) in(all_0_14_14, all_0_14_14)
% 6.97/2.45  	|
% 6.97/2.45  	| Instantiating formula (37) with all_0_14_14, all_0_14_14 and discharging atoms in(all_0_14_14, all_0_14_14), yields:
% 6.97/2.45  	| (117) $false
% 6.97/2.45  	|
% 6.97/2.45  	|-The branch is then unsatisfiable
% 6.97/2.45  |-Branch two:
% 6.97/2.45  | (118)  ~ being_limit_ordinal(all_0_14_14) &  ! [v0] : ( ~ ordinal(v0) |  ? [v1] : ( ~ (v1 = all_0_14_14) & succ(v0) = v1))
% 6.97/2.46  |
% 6.97/2.46  	| Applying alpha-rule on (118) yields:
% 6.97/2.46  	| (119)  ~ being_limit_ordinal(all_0_14_14)
% 6.97/2.46  	| (120)  ! [v0] : ( ~ ordinal(v0) |  ? [v1] : ( ~ (v1 = all_0_14_14) & succ(v0) = v1))
% 6.97/2.46  	|
% 6.97/2.46  	+-Applying beta-rule and splitting (108), into two cases.
% 6.97/2.46  	|-Branch one:
% 6.97/2.46  	| (113) being_limit_ordinal(all_0_14_14)
% 6.97/2.46  	|
% 6.97/2.46  		| Using (113) and (119) yields:
% 6.97/2.46  		| (117) $false
% 6.97/2.46  		|
% 6.97/2.46  		|-The branch is then unsatisfiable
% 6.97/2.46  	|-Branch two:
% 6.97/2.46  	| (119)  ~ being_limit_ordinal(all_0_14_14)
% 6.97/2.46  	| (124)  ? [v0] :  ? [v1] : (succ(v0) = v1 & ordinal(v0) & in(v0, all_0_14_14) &  ~ in(v1, all_0_14_14))
% 6.97/2.46  	|
% 6.97/2.46  		| Instantiating (124) with all_43_0_23, all_43_1_24 yields:
% 6.97/2.46  		| (125) succ(all_43_1_24) = all_43_0_23 & ordinal(all_43_1_24) & in(all_43_1_24, all_0_14_14) &  ~ in(all_43_0_23, all_0_14_14)
% 6.97/2.46  		|
% 6.97/2.46  		| Applying alpha-rule on (125) yields:
% 6.97/2.46  		| (126) succ(all_43_1_24) = all_43_0_23
% 6.97/2.46  		| (127) ordinal(all_43_1_24)
% 6.97/2.46  		| (128) in(all_43_1_24, all_0_14_14)
% 6.97/2.46  		| (129)  ~ in(all_43_0_23, all_0_14_14)
% 6.97/2.46  		|
% 6.97/2.46  		| Instantiating formula (81) with all_43_0_23, all_43_1_24 and discharging atoms succ(all_43_1_24) = all_43_0_23, ordinal(all_43_1_24), yields:
% 6.97/2.46  		| (130) epsilon_transitive(all_43_0_23)
% 6.97/2.46  		|
% 6.97/2.46  		| Instantiating formula (16) with all_43_0_23, all_43_1_24 and discharging atoms succ(all_43_1_24) = all_43_0_23, ordinal(all_43_1_24), yields:
% 6.97/2.46  		| (131) ordinal(all_43_0_23)
% 6.97/2.46  		|
% 6.97/2.46  		| Instantiating formula (120) with all_43_1_24 and discharging atoms ordinal(all_43_1_24), yields:
% 6.97/2.46  		| (132)  ? [v0] : ( ~ (v0 = all_0_14_14) & succ(all_43_1_24) = v0)
% 6.97/2.47  		|
% 6.97/2.47  		| Instantiating formula (69) with all_0_14_14, all_43_0_23, all_43_1_24 and discharging atoms succ(all_43_1_24) = all_43_0_23, ordinal(all_43_1_24), ordinal(all_0_14_14), in(all_43_1_24, all_0_14_14), yields:
% 6.97/2.47  		| (133) ordinal_subset(all_43_0_23, all_0_14_14)
% 6.97/2.47  		|
% 6.97/2.47  		| Instantiating (132) with all_55_0_27 yields:
% 6.97/2.47  		| (134)  ~ (all_55_0_27 = all_0_14_14) & succ(all_43_1_24) = all_55_0_27
% 6.97/2.47  		|
% 6.97/2.47  		| Applying alpha-rule on (134) yields:
% 6.97/2.47  		| (135)  ~ (all_55_0_27 = all_0_14_14)
% 6.97/2.47  		| (136) succ(all_43_1_24) = all_55_0_27
% 6.97/2.47  		|
% 6.97/2.47  		| Instantiating formula (67) with all_43_1_24, all_55_0_27, all_43_0_23 and discharging atoms succ(all_43_1_24) = all_55_0_27, succ(all_43_1_24) = all_43_0_23, yields:
% 6.97/2.47  		| (137) all_55_0_27 = all_43_0_23
% 6.97/2.47  		|
% 6.97/2.47  		| Equations (137) can reduce 135 to:
% 6.97/2.47  		| (138)  ~ (all_43_0_23 = all_0_14_14)
% 6.97/2.47  		|
% 6.97/2.47  		| Instantiating formula (48) with all_0_14_14, all_43_0_23 and discharging atoms ordinal_subset(all_43_0_23, all_0_14_14), ordinal(all_43_0_23), ordinal(all_0_14_14), yields:
% 6.97/2.47  		| (139) subset(all_43_0_23, all_0_14_14)
% 6.97/2.47  		|
% 6.97/2.47  		| Instantiating formula (6) with all_0_14_14, all_43_0_23 and discharging atoms subset(all_43_0_23, all_0_14_14), yields:
% 6.97/2.47  		| (140) all_43_0_23 = all_0_14_14 | proper_subset(all_43_0_23, all_0_14_14)
% 6.97/2.47  		|
% 6.97/2.47  		+-Applying beta-rule and splitting (140), into two cases.
% 6.97/2.47  		|-Branch one:
% 6.97/2.47  		| (141) proper_subset(all_43_0_23, all_0_14_14)
% 6.97/2.47  		|
% 6.97/2.47  			| Instantiating formula (7) with all_0_14_14, all_43_0_23 and discharging atoms epsilon_transitive(all_43_0_23), ordinal(all_0_14_14), proper_subset(all_43_0_23, all_0_14_14),  ~ in(all_43_0_23, all_0_14_14), yields:
% 6.97/2.47  			| (117) $false
% 6.97/2.47  			|
% 6.97/2.47  			|-The branch is then unsatisfiable
% 6.97/2.47  		|-Branch two:
% 6.97/2.47  		| (143)  ~ proper_subset(all_43_0_23, all_0_14_14)
% 6.97/2.47  		| (144) all_43_0_23 = all_0_14_14
% 6.97/2.47  		|
% 6.97/2.47  			| Equations (144) can reduce 138 to:
% 6.97/2.47  			| (145) $false
% 6.97/2.47  			|
% 6.97/2.47  			|-The branch is then unsatisfiable
% 6.97/2.47  % SZS output end Proof for theBenchmark
% 6.97/2.47  
% 6.97/2.47  1822ms
%------------------------------------------------------------------------------