TSTP Solution File: SEU238+1 by SPASS---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SPASS---3.9
% Problem  : SEU238+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : run_spass %d %s

% Computer : n004.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 14:35:24 EDT 2022

% Result   : Theorem 0.71s 0.90s
% Output   : Refutation 0.71s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SEU238+1 : TPTP v8.1.0. Released v3.3.0.
% 0.03/0.13  % Command  : run_spass %d %s
% 0.13/0.34  % Computer : n004.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Sat Jun 18 20:59:38 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.71/0.90  
% 0.71/0.90  SPASS V 3.9 
% 0.71/0.90  SPASS beiseite: Proof found.
% 0.71/0.90  % SZS status Theorem
% 0.71/0.90  Problem: /export/starexec/sandbox2/benchmark/theBenchmark.p 
% 0.71/0.90  SPASS derived 3542 clauses, backtracked 475 clauses, performed 24 splits and kept 1525 clauses.
% 0.71/0.90  SPASS allocated 119563 KBytes.
% 0.71/0.90  SPASS spent	0:00:00.49 on the problem.
% 0.71/0.90  		0:00:00.04 for the input.
% 0.71/0.90  		0:00:00.03 for the FLOTTER CNF translation.
% 0.71/0.90  		0:00:00.06 for inferences.
% 0.71/0.90  		0:00:00.01 for the backtracking.
% 0.71/0.90  		0:00:00.31 for the reduction.
% 0.71/0.90  
% 0.71/0.90  
% 0.71/0.90  Here is a proof with depth 12, length 161 :
% 0.71/0.90  % SZS output start Refutation
% 0.71/0.90  1[0:Inp] ||  -> ordinal(skc15)*.
% 0.71/0.90  2[0:Inp] ||  -> ordinal(skc14)*.
% 0.71/0.90  51[0:Inp] ||  -> ordinal(skf3(u))*.
% 0.71/0.90  52[0:Inp] ||  -> SkP0(skc14) being_limit_ordinal(skc14)*.
% 0.71/0.90  56[0:Inp] ||  -> in(u,succ(u))*.
% 0.71/0.90  58[0:Inp] ordinal(u) ||  -> epsilon_transitive(u)*.
% 0.71/0.90  59[0:Inp] ordinal(u) ||  -> epsilon_connected(u)*.
% 0.71/0.90  66[0:Inp] ||  -> SkP0(skc14) equal(succ(skc15),skc14)**.
% 0.71/0.90  67[0:Inp] SkP0(u) being_limit_ordinal(u) ||  -> .
% 0.71/0.90  68[0:Inp] ordinal(u) ||  -> epsilon_transitive(succ(u))*.
% 0.71/0.90  69[0:Inp] ordinal(u) ||  -> epsilon_connected(succ(u))*.
% 0.71/0.90  70[0:Inp] ordinal(u) ||  -> ordinal(succ(u))*.
% 0.71/0.90  71[0:Inp] ordinal(u) ||  -> ordinal_subset(u,u)*.
% 0.71/0.90  75[0:Inp] || proper_subset(u,v) -> subset(u,v)*.
% 0.71/0.90  80[0:Inp] empty(u) || in(v,u)* -> .
% 0.71/0.90  81[0:Inp] || in(u,v)*+ in(v,u)* -> .
% 0.71/0.90  82[0:Inp] || proper_subset(u,v)*+ proper_subset(v,u)* -> .
% 0.71/0.90  86[0:Inp] || subset(u,v) -> element(u,powerset(v))*.
% 0.71/0.90  87[0:Inp] || element(u,v)* -> empty(v) in(u,v).
% 0.71/0.90  88[0:Inp] ordinal(u) ||  -> being_limit_ordinal(u) in(skf3(u),u)*.
% 0.71/0.90  90[0:Inp] || subset(u,v)* -> proper_subset(u,v) equal(u,v).
% 0.71/0.90  92[0:Inp] SkP0(u) ordinal(v) || equal(u,succ(v))* -> .
% 0.71/0.90  94[0:Inp] ordinal(u) || in(succ(skf3(u)),u)* -> being_limit_ordinal(u).
% 0.71/0.90  95[0:Inp] ordinal(u) ordinal(v) ||  -> ordinal_subset(u,v)* ordinal_subset(v,u)*.
% 0.71/0.90  96[0:Inp] || in(u,v)* element(v,powerset(w))*+ -> element(u,w)*.
% 0.71/0.90  98[0:Inp] ordinal(u) ordinal(v) || ordinal_subset(v,u) -> subset(v,u)*.
% 0.71/0.90  100[0:Inp] ordinal(u) epsilon_transitive(v) || proper_subset(v,u)* -> in(v,u).
% 0.71/0.90  101[0:Inp] ordinal(u) ordinal(v) || in(v,u) -> ordinal_subset(succ(v),u)*.
% 0.71/0.90  102[0:Inp] ordinal(u) ordinal(v) || ordinal_subset(succ(v),u)* -> in(v,u).
% 0.71/0.90  103[0:Inp] ordinal(u) ordinal(v) being_limit_ordinal(u) || in(v,u) -> in(succ(v),u)*.
% 0.71/0.90  105[0:Res:2.0,103.2] ordinal(u) being_limit_ordinal(skc14) || in(u,skc14) -> in(succ(u),skc14)*.
% 0.71/0.90  107[0:Res:2.0,102.0] ordinal(u) || ordinal_subset(succ(skc14),u)* -> in(skc14,u).
% 0.71/0.90  108[0:Res:2.0,98.0] ordinal(u) || ordinal_subset(skc14,u) -> subset(skc14,u)*.
% 0.71/0.90  110[0:Res:2.0,95.0] ordinal(u) ||  -> ordinal_subset(u,skc14)* ordinal_subset(skc14,u)*.
% 0.71/0.90  112[0:Res:2.0,94.0] || in(succ(skf3(skc14)),skc14)* -> being_limit_ordinal(skc14).
% 0.71/0.90  113[0:Res:2.0,88.0] ||  -> being_limit_ordinal(skc14) in(skf3(skc14),skc14)*.
% 0.71/0.90  114[0:Res:2.0,68.0] ||  -> epsilon_transitive(succ(skc14))*.
% 0.71/0.90  115[0:Res:2.0,69.0] ||  -> epsilon_connected(succ(skc14))*.
% 0.71/0.90  116[0:Res:2.0,70.0] ||  -> ordinal(succ(skc14))*.
% 0.71/0.90  117[0:Res:2.0,71.0] ||  -> ordinal_subset(skc14,skc14)*.
% 0.71/0.90  118[0:Res:2.0,58.0] ||  -> epsilon_transitive(skc14)*.
% 0.71/0.90  119[0:Res:2.0,59.0] ||  -> epsilon_connected(skc14)*.
% 0.71/0.90  120[0:Res:2.0,103.1] ordinal(u) being_limit_ordinal(u) || in(skc14,u) -> in(succ(skc14),u)*.
% 0.71/0.90  122[0:Res:2.0,102.1] ordinal(u) || ordinal_subset(succ(u),skc14)* -> in(u,skc14).
% 0.71/0.90  123[0:Res:2.0,98.1] ordinal(u) || ordinal_subset(u,skc14) -> subset(u,skc14)*.
% 0.71/0.90  125[0:Res:2.0,100.1] epsilon_transitive(u) || proper_subset(u,skc14)* -> in(u,skc14).
% 0.71/0.90  133[0:Res:1.0,92.0] SkP0(u) || equal(u,succ(skc15))* -> .
% 0.71/0.90  162[0:Res:1.0,105.1] being_limit_ordinal(skc14) || in(skc15,skc14) -> in(succ(skc15),skc14)*.
% 0.71/0.90  167[0:Res:1.0,122.0] || ordinal_subset(succ(skc15),skc14)* -> in(skc15,skc14).
% 0.71/0.90  185[0:Res:2.0,120.1] being_limit_ordinal(skc14) || in(skc14,skc14) -> in(succ(skc14),skc14)*.
% 0.71/0.90  191[0:Res:2.0,122.0] || ordinal_subset(succ(skc14),skc14)* -> in(skc14,skc14).
% 0.71/0.90  209[1:Spt:66.1] ||  -> equal(succ(skc15),skc14)**.
% 0.71/0.90  215[1:Rew:209.0,167.0] || ordinal_subset(skc14,skc14)* -> in(skc15,skc14).
% 0.71/0.90  219[1:Rew:209.0,133.1] SkP0(u) || equal(u,skc14)* -> .
% 0.71/0.90  221[1:Rew:209.0,162.2] being_limit_ordinal(skc14) || in(skc15,skc14)* -> in(skc14,skc14).
% 0.71/0.90  223[1:MRR:215.0,117.0] ||  -> in(skc15,skc14)*.
% 0.71/0.90  224[1:MRR:221.1,223.0] being_limit_ordinal(skc14) ||  -> in(skc14,skc14)*.
% 0.71/0.90  225[1:MRR:185.1,224.1] being_limit_ordinal(skc14) ||  -> in(succ(skc14),skc14)*.
% 0.71/0.90  227[2:Spt:52.1] ||  -> being_limit_ordinal(skc14)*.
% 0.71/0.90  230[2:MRR:225.0,227.0] ||  -> in(succ(skc14),skc14)*.
% 0.71/0.90  281[0:Res:56.0,80.1] empty(succ(u)) ||  -> .
% 0.71/0.90  333[0:Res:56.0,81.0] || in(succ(u),u)* -> .
% 0.71/0.90  340[2:UnC:333.0,230.0] ||  -> .
% 0.71/0.90  341[2:Spt:340.0,52.1,227.0] || being_limit_ordinal(skc14)* -> .
% 0.71/0.90  342[2:Spt:340.0,52.0] ||  -> SkP0(skc14)*.
% 0.71/0.90  348[2:EmS:219.0,342.0] || equal(skc14,skc14)* -> .
% 0.71/0.90  349[2:Obv:348.0] ||  -> .
% 0.71/0.90  350[1:Spt:349.0,66.1,209.0] || equal(succ(skc15),skc14)** -> .
% 0.71/0.90  351[1:Spt:349.0,66.0] ||  -> SkP0(skc14)*.
% 0.71/0.90  354[2:Spt:113.0] ||  -> being_limit_ordinal(skc14)*.
% 0.71/0.90  359[2:EmS:67.0,67.1,351.0,354.0] ||  -> .
% 0.71/0.90  360[2:Spt:359.0,113.0,354.0] || being_limit_ordinal(skc14)* -> .
% 0.71/0.90  361[2:Spt:359.0,113.1] ||  -> in(skf3(skc14),skc14)*.
% 0.71/0.90  362[2:MRR:112.1,360.0] || in(succ(skf3(skc14)),skc14)* -> .
% 0.71/0.90  364[2:Res:361.0,80.1] empty(skc14) ||  -> .
% 0.71/0.90  484[0:Res:95.2,191.0] ordinal(succ(skc14)) ordinal(skc14) ||  -> ordinal_subset(skc14,succ(skc14))* in(skc14,skc14).
% 0.71/0.90  494[1:SSi:484.1,484.0,2.0,119.0,118.0,351.0,115.0,114.0,116.0] ||  -> ordinal_subset(skc14,succ(skc14))* in(skc14,skc14).
% 0.71/0.90  505[0:Res:86.1,96.1] || subset(u,v)*+ in(w,u)* -> element(w,v)*.
% 0.71/0.90  508[3:Spt:494.1] ||  -> in(skc14,skc14)*.
% 0.71/0.90  511[3:Res:508.0,81.0] || in(skc14,skc14)* -> .
% 0.71/0.90  513[3:MRR:511.0,508.0] ||  -> .
% 0.71/0.90  514[3:Spt:513.0,494.1,508.0] || in(skc14,skc14)* -> .
% 0.71/0.90  515[3:Spt:513.0,494.0] ||  -> ordinal_subset(skc14,succ(skc14))*.
% 0.71/0.90  517[0:Res:98.3,90.0] ordinal(u) ordinal(v) || ordinal_subset(v,u)* -> proper_subset(v,u) equal(v,u).
% 0.71/0.90  573[0:Res:108.2,90.0] ordinal(u) || ordinal_subset(skc14,u)* -> proper_subset(skc14,u) equal(skc14,u).
% 0.71/0.90  615[0:Res:103.4,333.0] ordinal(u) ordinal(u) being_limit_ordinal(u) || in(u,u)* -> .
% 0.71/0.90  618[0:Obv:615.0] ordinal(u) being_limit_ordinal(u) || in(u,u)* -> .
% 0.71/0.90  686[0:Res:95.2,107.1] ordinal(succ(skc14)) ordinal(u) ordinal(u) ||  -> ordinal_subset(u,succ(skc14))* in(skc14,u).
% 0.71/0.90  695[0:Obv:686.1] ordinal(succ(skc14)) ordinal(u) ||  -> ordinal_subset(u,succ(skc14))* in(skc14,u).
% 0.71/0.90  696[0:SSi:695.0,115.0,114.0,116.0] ordinal(u) ||  -> ordinal_subset(u,succ(skc14))* in(skc14,u).
% 0.71/0.90  698[0:Res:696.1,102.2] ordinal(succ(u)) ordinal(succ(skc14)) ordinal(u) ||  -> in(skc14,succ(u))* in(u,succ(skc14))*.
% 0.71/0.90  701[0:SSi:698.1,698.0,115.1,114.1,116.1,69.0,68.0,70.0] ordinal(u) ||  -> in(skc14,succ(u))* in(u,succ(skc14))*.
% 0.71/0.90  845[0:Res:75.1,505.0] || proper_subset(u,v)*+ in(w,u)* -> element(w,v)*.
% 0.71/0.90  846[0:Res:123.2,505.0] ordinal(u) || ordinal_subset(u,skc14)*+ in(v,u)* -> element(v,skc14)*.
% 0.71/0.90  916[0:Res:701.2,333.0] ordinal(succ(succ(skc14))) ||  -> in(skc14,succ(succ(succ(skc14))))*.
% 0.71/0.90  919[0:SSi:916.0,69.0,115.0,114.0,116.1,68.0,115.0,114.0,116.1,70.0,115.0,114.0,116.1] ||  -> in(skc14,succ(succ(succ(skc14))))*.
% 0.71/0.90  960[0:Res:120.3,618.2] ordinal(succ(skc14)) being_limit_ordinal(succ(skc14)) ordinal(succ(skc14)) being_limit_ordinal(succ(skc14)) || in(skc14,succ(skc14))* -> .
% 0.71/0.90  965[0:Obv:960.1] ordinal(succ(skc14)) being_limit_ordinal(succ(skc14)) || in(skc14,succ(skc14))* -> .
% 0.71/0.90  966[0:SSi:965.0,115.0,114.0,116.0] being_limit_ordinal(succ(skc14)) || in(skc14,succ(skc14))* -> .
% 0.71/0.90  967[0:MRR:966.1,56.0] being_limit_ordinal(succ(skc14)) ||  -> .
% 0.71/0.90  1023[0:Res:110.2,517.2] ordinal(u) ordinal(u) ordinal(skc14) ||  -> ordinal_subset(u,skc14)* proper_subset(skc14,u) equal(skc14,u).
% 0.71/0.90  1026[0:Res:101.3,517.2] ordinal(u) ordinal(v) ordinal(u) ordinal(succ(v)) || in(v,u) -> proper_subset(succ(v),u)* equal(succ(v),u).
% 0.71/0.90  1034[3:Res:515.0,517.2] ordinal(succ(skc14)) ordinal(skc14) ||  -> proper_subset(skc14,succ(skc14))* equal(succ(skc14),skc14).
% 0.71/0.90  1046[3:SSi:1034.1,1034.0,2.0,119.0,118.0,351.0,115.0,114.0,116.0] ||  -> proper_subset(skc14,succ(skc14))* equal(succ(skc14),skc14).
% 0.71/0.90  1051[0:Obv:1023.0] ordinal(u) ordinal(skc14) ||  -> ordinal_subset(u,skc14)* proper_subset(skc14,u) equal(skc14,u).
% 0.71/0.90  1052[1:SSi:1051.1,2.0,119.0,118.0,351.0] ordinal(u) ||  -> ordinal_subset(u,skc14)* proper_subset(skc14,u) equal(skc14,u).
% 0.71/0.90  1079[0:Obv:1026.0] ordinal(u) ordinal(v) ordinal(succ(u)) || in(u,v) -> proper_subset(succ(u),v)* equal(succ(u),v).
% 0.71/0.93  1080[0:SSi:1079.2,69.1,68.1,70.1] ordinal(u) ordinal(v) || in(u,v) -> proper_subset(succ(u),v)* equal(succ(u),v).
% 0.71/0.93  1379[4:Spt:1046.1] ||  -> equal(succ(skc14),skc14)**.
% 0.71/0.93  1394[4:Rew:1379.0,919.0] ||  -> in(skc14,succ(succ(skc14)))*.
% 0.71/0.93  1418[4:Rew:1379.0,1394.0,1379.0,1394.0] ||  -> in(skc14,skc14)*.
% 0.71/0.93  1419[4:MRR:1418.0,514.0] ||  -> .
% 0.71/0.93  1423[4:Spt:1419.0,1046.1,1379.0] || equal(succ(skc14),skc14)** -> .
% 0.71/0.93  1424[4:Spt:1419.0,1046.0] ||  -> proper_subset(skc14,succ(skc14))*.
% 0.71/0.93  2730[4:Res:1424.0,845.0] || in(u,skc14) -> element(u,succ(skc14))*.
% 0.71/0.93  2736[4:Res:2730.1,87.0] || in(u,skc14) -> empty(succ(skc14)) in(u,succ(skc14))*.
% 0.71/0.93  2737[4:MRR:2736.1,281.0] || in(u,skc14) -> in(u,succ(skc14))*.
% 0.71/0.93  2760[1:Res:1052.1,517.2] ordinal(u) ordinal(skc14) ordinal(u) ||  -> proper_subset(skc14,u)* equal(skc14,u) proper_subset(u,skc14)* equal(u,skc14).
% 0.71/0.93  2767[1:Obv:2760.4] ordinal(skc14) ordinal(u) ||  -> proper_subset(skc14,u)* proper_subset(u,skc14)* equal(u,skc14).
% 0.71/0.93  2768[1:SSi:2767.0,351.0,118.0,119.0,2.0] ordinal(u) ||  -> proper_subset(skc14,u)* proper_subset(u,skc14)* equal(u,skc14).
% 0.71/0.93  2773[4:Res:2737.1,94.1] ordinal(succ(skc14)) || in(succ(skf3(succ(skc14))),skc14)* -> being_limit_ordinal(succ(skc14)).
% 0.71/0.93  2775[4:SSi:2773.0,69.0,351.0,118.0,119.0,2.1,68.0,351.0,118.0,119.0,2.1,70.0,351.0,118.0,119.0,2.1] || in(succ(skf3(succ(skc14))),skc14)* -> being_limit_ordinal(succ(skc14)).
% 0.71/0.93  2776[4:MRR:2775.1,967.0] || in(succ(skf3(succ(skc14))),skc14)* -> .
% 0.71/0.93  3010[1:Res:2768.2,125.1] ordinal(u) epsilon_transitive(u) ||  -> proper_subset(skc14,u)* equal(u,skc14) in(u,skc14).
% 0.71/0.93  3020[1:SSi:3010.1,58.1] ordinal(u) ||  -> proper_subset(skc14,u)* equal(u,skc14) in(u,skc14).
% 0.71/0.93  3156[1:Res:3020.1,100.2] ordinal(u) ordinal(u) epsilon_transitive(skc14) ||  -> equal(u,skc14) in(u,skc14)* in(skc14,u)*.
% 0.71/0.93  3162[1:Obv:3156.0] ordinal(u) epsilon_transitive(skc14) ||  -> equal(u,skc14) in(u,skc14)* in(skc14,u)*.
% 0.71/0.93  3163[1:SSi:3162.1,351.0,118.0,119.0,2.0] ordinal(u) ||  -> equal(u,skc14) in(u,skc14)* in(skc14,u)*.
% 0.71/0.93  3199[2:Res:3163.2,362.0] ordinal(succ(skf3(skc14))) ||  -> equal(succ(skf3(skc14)),skc14) in(skc14,succ(skf3(skc14)))*.
% 0.71/0.93  3200[4:Res:3163.2,2776.0] ordinal(succ(skf3(succ(skc14)))) ||  -> equal(succ(skf3(succ(skc14))),skc14) in(skc14,succ(skf3(succ(skc14))))*.
% 0.71/0.93  3208[2:SSi:3199.0,69.0,51.0,351.0,118.0,119.0,2.1,68.0,51.0,351.0,118.0,119.0,2.1,70.0,51.0,351.0,118.0,119.0,2.1] ||  -> equal(succ(skf3(skc14)),skc14) in(skc14,succ(skf3(skc14)))*.
% 0.71/0.93  3209[4:SSi:3200.0,69.0,51.0,69.0,351.0,118.1,119.0,2.0,68.0,351.0,118.1,119.0,2.0,70.0,351.0,118.1,119.0,2.1,68.0,51.0,69.0,351.0,118.1,119.0,2.0,68.0,351.0,118.1,119.0,2.0,70.0,351.0,118.1,119.0,2.1,70.0,51.0,69.0,351.0,118.1,119.0,2.0,68.0,351.0,118.1,119.0,2.0,70.0,351.0,118.1,119.0,2.1] ||  -> equal(succ(skf3(succ(skc14))),skc14) in(skc14,succ(skf3(succ(skc14))))*.
% 0.71/0.93  3211[5:Spt:3208.0] ||  -> equal(succ(skf3(skc14)),skc14)**.
% 0.71/0.93  3238[5:SpL:3211.0,92.2] SkP0(u) ordinal(skf3(skc14)) || equal(u,skc14)* -> .
% 0.71/0.93  3241[5:SSi:3238.1,51.0,351.0,118.0,119.0,2.0] SkP0(u) || equal(u,skc14)* -> .
% 0.71/0.93  3249[5:EmS:3241.0,351.0] || equal(skc14,skc14)* -> .
% 0.71/0.93  3250[5:Obv:3249.0] ||  -> .
% 0.71/0.93  3251[5:Spt:3250.0,3208.0,3211.0] || equal(succ(skf3(skc14)),skc14)** -> .
% 0.71/0.93  3252[5:Spt:3250.0,3208.1] ||  -> in(skc14,succ(skf3(skc14)))*.
% 0.71/0.93  3279[0:Res:110.1,846.1] ordinal(u) ordinal(u) || in(v,u)* -> ordinal_subset(skc14,u)* element(v,skc14)*.
% 0.71/0.93  3284[0:Obv:3279.0] ordinal(u) || in(v,u)*+ -> ordinal_subset(skc14,u)* element(v,skc14)*.
% 0.71/0.93  3292[6:Spt:3209.0] ||  -> equal(succ(skf3(succ(skc14))),skc14)**.
% 0.71/0.93  3322[6:SpL:3292.0,94.1] ordinal(succ(skc14)) || in(skc14,succ(skc14))* -> being_limit_ordinal(succ(skc14)).
% 0.71/0.93  3326[6:SSi:3322.0,69.0,351.0,118.0,119.0,2.1,68.0,351.0,118.0,119.0,2.1,70.0,351.0,118.0,119.0,2.1] || in(skc14,succ(skc14))* -> being_limit_ordinal(succ(skc14)).
% 0.71/0.93  3327[6:MRR:3326.0,3326.1,56.0,967.0] ||  -> .
% 0.71/0.93  3334[6:Spt:3327.0,3209.0,3292.0] || equal(succ(skf3(succ(skc14))),skc14)** -> .
% 0.71/0.93  3335[6:Spt:3327.0,3209.1] ||  -> in(skc14,succ(skf3(succ(skc14))))*.
% 0.71/0.93  4502[5:Res:3252.0,3284.1] ordinal(succ(skf3(skc14))) ||  -> ordinal_subset(skc14,succ(skf3(skc14)))* element(skc14,skc14).
% 0.71/0.93  4506[5:SSi:4502.0,69.0,51.0,351.0,118.0,119.0,2.1,68.0,51.0,351.0,118.0,119.0,2.1,70.0,51.0,351.0,118.0,119.0,2.1] ||  -> ordinal_subset(skc14,succ(skf3(skc14)))* element(skc14,skc14).
% 0.71/0.93  4541[7:Spt:4506.0] ||  -> ordinal_subset(skc14,succ(skf3(skc14)))*.
% 0.71/0.93  4545[7:Res:4541.0,573.1] ordinal(succ(skf3(skc14))) ||  -> proper_subset(skc14,succ(skf3(skc14)))* equal(succ(skf3(skc14)),skc14).
% 0.71/0.93  4547[7:SSi:4545.0,69.0,51.0,351.0,118.0,119.0,2.1,68.0,51.0,351.0,118.0,119.0,2.1,70.0,51.0,351.0,118.0,119.0,2.1] ||  -> proper_subset(skc14,succ(skf3(skc14)))* equal(succ(skf3(skc14)),skc14).
% 0.71/0.93  4548[7:MRR:4547.1,3251.0] ||  -> proper_subset(skc14,succ(skf3(skc14)))*.
% 0.71/0.93  4554[7:Res:4548.0,82.0] || proper_subset(succ(skf3(skc14)),skc14)* -> .
% 0.71/0.93  4564[7:Res:1080.3,4554.0] ordinal(skf3(skc14)) ordinal(skc14) || in(skf3(skc14),skc14)* -> equal(succ(skf3(skc14)),skc14).
% 0.71/0.93  4567[7:SSi:4564.1,4564.0,351.0,118.0,119.0,2.0,51.0,351.0,118.0,119.0,2.0] || in(skf3(skc14),skc14)* -> equal(succ(skf3(skc14)),skc14).
% 0.71/0.93  4568[7:MRR:4567.0,4567.1,361.0,3251.0] ||  -> .
% 0.71/0.93  4569[7:Spt:4568.0,4506.0,4541.0] || ordinal_subset(skc14,succ(skf3(skc14)))* -> .
% 0.71/0.93  4570[7:Spt:4568.0,4506.1] ||  -> element(skc14,skc14)*.
% 0.71/0.93  4571[7:Res:4570.0,87.0] ||  -> empty(skc14) in(skc14,skc14)*.
% 0.71/0.93  4572[7:MRR:4571.0,4571.1,364.0,514.0] ||  -> .
% 0.71/0.93  % SZS output end Refutation
% 0.71/0.93  Formulae used in the proof : t42_ordinal1 rc3_ordinal1 t41_ordinal1 t10_ordinal1 cc1_ordinal1 fc3_ordinal1 reflexivity_r1_ordinal1 d8_xboole_0 t7_boole antisymmetry_r2_hidden antisymmetry_r2_xboole_0 t3_subset t2_subset connectedness_r1_ordinal1 t4_subset redefinition_r1_ordinal1 t21_ordinal1 t33_ordinal1
% 0.71/0.93  
%------------------------------------------------------------------------------