TSTP Solution File: SEU237+3 by E-SAT---3.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E-SAT---3.1
% Problem  : SEU237+3 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 2400s
% WCLimit  : 300s
% DateTime : Tue Oct 10 19:31:06 EDT 2023

% Result   : Theorem 1778.62s 229.15s
% Output   : CNFRefutation 1778.62s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   39
%            Number of leaves      :   25
% Syntax   : Number of formulae    :  187 (  28 unt;   0 def)
%            Number of atoms       :  549 ( 124 equ)
%            Maximal formula atoms :   20 (   2 avg)
%            Number of connectives :  560 ( 198   ~; 275   |;  51   &)
%                                         (  12 <=>;  24  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   17 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   16 (  14 usr;   1 prp; 0-2 aty)
%            Number of functors    :   14 (  14 usr;   3 con; 0-3 aty)
%            Number of variables   :  235 (   8 sgn; 101   !;   2   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(t41_ordinal1,conjecture,
    ! [X1] :
      ( ordinal(X1)
     => ( being_limit_ordinal(X1)
      <=> ! [X2] :
            ( ordinal(X2)
           => ( in(X2,X1)
             => in(succ(X2),X1) ) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',t41_ordinal1) ).

fof(t23_ordinal1,axiom,
    ! [X1,X2] :
      ( ordinal(X2)
     => ( in(X1,X2)
       => ordinal(X1) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',t23_ordinal1) ).

fof(d3_tarski,axiom,
    ! [X1,X2] :
      ( subset(X1,X2)
    <=> ! [X3] :
          ( in(X3,X1)
         => in(X3,X2) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',d3_tarski) ).

fof(d4_tarski,axiom,
    ! [X1,X2] :
      ( X2 = union(X1)
    <=> ! [X3] :
          ( in(X3,X2)
        <=> ? [X4] :
              ( in(X3,X4)
              & in(X4,X1) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',d4_tarski) ).

fof(d1_tarski,axiom,
    ! [X1,X2] :
      ( X2 = singleton(X1)
    <=> ! [X3] :
          ( in(X3,X2)
        <=> X3 = X1 ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',d1_tarski) ).

fof(t10_ordinal1,axiom,
    ! [X1] : in(X1,succ(X1)),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',t10_ordinal1) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [X1,X2] :
      ( in(X1,X2)
     => ~ in(X2,X1) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',antisymmetry_r2_hidden) ).

fof(t7_boole,axiom,
    ! [X1,X2] :
      ~ ( in(X1,X2)
        & empty(X2) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',t7_boole) ).

fof(t2_subset,axiom,
    ! [X1,X2] :
      ( element(X1,X2)
     => ( empty(X2)
        | in(X1,X2) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',t2_subset) ).

fof(existence_m1_subset_1,axiom,
    ! [X1] :
    ? [X2] : element(X2,X1),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',existence_m1_subset_1) ).

fof(d8_xboole_0,axiom,
    ! [X1,X2] :
      ( proper_subset(X1,X2)
    <=> ( subset(X1,X2)
        & X1 != X2 ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',d8_xboole_0) ).

fof(d6_ordinal1,axiom,
    ! [X1] :
      ( being_limit_ordinal(X1)
    <=> X1 = union(X1) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',d6_ordinal1) ).

fof(t6_boole,axiom,
    ! [X1] :
      ( empty(X1)
     => X1 = empty_set ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',t6_boole) ).

fof(t21_ordinal1,axiom,
    ! [X1] :
      ( epsilon_transitive(X1)
     => ! [X2] :
          ( ordinal(X2)
         => ( proper_subset(X1,X2)
           => in(X1,X2) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',t21_ordinal1) ).

fof(fc4_ordinal1,axiom,
    ! [X1] :
      ( ordinal(X1)
     => ( epsilon_transitive(union(X1))
        & epsilon_connected(union(X1))
        & ordinal(union(X1)) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',fc4_ordinal1) ).

fof(t8_xboole_1,axiom,
    ! [X1,X2,X3] :
      ( ( subset(X1,X2)
        & subset(X3,X2) )
     => subset(set_union2(X1,X3),X2) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',t8_xboole_1) ).

fof(cc1_ordinal1,axiom,
    ! [X1] :
      ( ordinal(X1)
     => ( epsilon_transitive(X1)
        & epsilon_connected(X1) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',cc1_ordinal1) ).

fof(fc2_ordinal1,axiom,
    ( relation(empty_set)
    & relation_empty_yielding(empty_set)
    & function(empty_set)
    & one_to_one(empty_set)
    & empty(empty_set)
    & epsilon_transitive(empty_set)
    & epsilon_connected(empty_set)
    & ordinal(empty_set) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',fc2_ordinal1) ).

fof(t1_boole,axiom,
    ! [X1] : set_union2(X1,empty_set) = X1,
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',t1_boole) ).

fof(d2_ordinal1,axiom,
    ! [X1] :
      ( epsilon_transitive(X1)
    <=> ! [X2] :
          ( in(X2,X1)
         => subset(X2,X1) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',d2_ordinal1) ).

fof(d1_ordinal1,axiom,
    ! [X1] : succ(X1) = set_union2(X1,singleton(X1)),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',d1_ordinal1) ).

fof(fc3_ordinal1,axiom,
    ! [X1] :
      ( ordinal(X1)
     => ( ~ empty(succ(X1))
        & epsilon_transitive(succ(X1))
        & epsilon_connected(succ(X1))
        & ordinal(succ(X1)) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',fc3_ordinal1) ).

fof(connectedness_r1_ordinal1,axiom,
    ! [X1,X2] :
      ( ( ordinal(X1)
        & ordinal(X2) )
     => ( ordinal_subset(X1,X2)
        | ordinal_subset(X2,X1) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',connectedness_r1_ordinal1) ).

fof(d10_xboole_0,axiom,
    ! [X1,X2] :
      ( X1 = X2
    <=> ( subset(X1,X2)
        & subset(X2,X1) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',d10_xboole_0) ).

fof(redefinition_r1_ordinal1,axiom,
    ! [X1,X2] :
      ( ( ordinal(X1)
        & ordinal(X2) )
     => ( ordinal_subset(X1,X2)
      <=> subset(X1,X2) ) ),
    file('/export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p',redefinition_r1_ordinal1) ).

fof(c_0_25,negated_conjecture,
    ~ ! [X1] :
        ( ordinal(X1)
       => ( being_limit_ordinal(X1)
        <=> ! [X2] :
              ( ordinal(X2)
             => ( in(X2,X1)
               => in(succ(X2),X1) ) ) ) ),
    inference(assume_negation,[status(cth)],[t41_ordinal1]) ).

fof(c_0_26,plain,
    ! [X36,X37] :
      ( ~ ordinal(X37)
      | ~ in(X36,X37)
      | ordinal(X36) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t23_ordinal1])]) ).

fof(c_0_27,plain,
    ! [X14,X15,X16,X17,X18] :
      ( ( ~ subset(X14,X15)
        | ~ in(X16,X14)
        | in(X16,X15) )
      & ( in(esk4_2(X17,X18),X17)
        | subset(X17,X18) )
      & ( ~ in(esk4_2(X17,X18),X18)
        | subset(X17,X18) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_tarski])])])])])]) ).

fof(c_0_28,negated_conjecture,
    ! [X7] :
      ( ordinal(esk1_0)
      & ( ordinal(esk2_0)
        | ~ being_limit_ordinal(esk1_0) )
      & ( in(esk2_0,esk1_0)
        | ~ being_limit_ordinal(esk1_0) )
      & ( ~ in(succ(esk2_0),esk1_0)
        | ~ being_limit_ordinal(esk1_0) )
      & ( being_limit_ordinal(esk1_0)
        | ~ ordinal(X7)
        | ~ in(X7,esk1_0)
        | in(succ(X7),esk1_0) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_25])])])])]) ).

cnf(c_0_29,plain,
    ( ordinal(X2)
    | ~ ordinal(X1)
    | ~ in(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

cnf(c_0_30,plain,
    ( in(esk4_2(X1,X2),X1)
    | subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_27]) ).

fof(c_0_31,plain,
    ! [X20,X21,X22,X24,X25,X26,X27,X29] :
      ( ( in(X22,esk5_3(X20,X21,X22))
        | ~ in(X22,X21)
        | X21 != union(X20) )
      & ( in(esk5_3(X20,X21,X22),X20)
        | ~ in(X22,X21)
        | X21 != union(X20) )
      & ( ~ in(X24,X25)
        | ~ in(X25,X20)
        | in(X24,X21)
        | X21 != union(X20) )
      & ( ~ in(esk6_2(X26,X27),X27)
        | ~ in(esk6_2(X26,X27),X29)
        | ~ in(X29,X26)
        | X27 = union(X26) )
      & ( in(esk6_2(X26,X27),esk7_2(X26,X27))
        | in(esk6_2(X26,X27),X27)
        | X27 = union(X26) )
      & ( in(esk7_2(X26,X27),X26)
        | in(esk6_2(X26,X27),X27)
        | X27 = union(X26) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d4_tarski])])])])])]) ).

cnf(c_0_32,negated_conjecture,
    ( being_limit_ordinal(esk1_0)
    | in(succ(X1),esk1_0)
    | ~ ordinal(X1)
    | ~ in(X1,esk1_0) ),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_33,plain,
    ( subset(X1,X2)
    | ordinal(esk4_2(X1,X2))
    | ~ ordinal(X1) ),
    inference(spm,[status(thm)],[c_0_29,c_0_30]) ).

cnf(c_0_34,negated_conjecture,
    ordinal(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

fof(c_0_35,plain,
    ! [X100,X101,X102,X103,X104,X105] :
      ( ( ~ in(X102,X101)
        | X102 = X100
        | X101 != singleton(X100) )
      & ( X103 != X100
        | in(X103,X101)
        | X101 != singleton(X100) )
      & ( ~ in(esk17_2(X104,X105),X105)
        | esk17_2(X104,X105) != X104
        | X105 = singleton(X104) )
      & ( in(esk17_2(X104,X105),X105)
        | esk17_2(X104,X105) = X104
        | X105 = singleton(X104) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d1_tarski])])])])])]) ).

cnf(c_0_36,plain,
    ( in(X1,X4)
    | ~ in(X1,X2)
    | ~ in(X2,X3)
    | X4 != union(X3) ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_37,negated_conjecture,
    ( being_limit_ordinal(esk1_0)
    | subset(esk1_0,X1)
    | in(succ(esk4_2(esk1_0,X1)),esk1_0)
    | ~ ordinal(esk4_2(esk1_0,X1)) ),
    inference(spm,[status(thm)],[c_0_32,c_0_30]) ).

cnf(c_0_38,negated_conjecture,
    ( subset(esk1_0,X1)
    | ordinal(esk4_2(esk1_0,X1)) ),
    inference(spm,[status(thm)],[c_0_33,c_0_34]) ).

cnf(c_0_39,plain,
    ( X1 = X3
    | ~ in(X1,X2)
    | X2 != singleton(X3) ),
    inference(split_conjunct,[status(thm)],[c_0_35]) ).

cnf(c_0_40,plain,
    ( in(X1,union(X2))
    | ~ in(X3,X2)
    | ~ in(X1,X3) ),
    inference(er,[status(thm)],[c_0_36]) ).

cnf(c_0_41,negated_conjecture,
    ( being_limit_ordinal(esk1_0)
    | subset(esk1_0,X1)
    | in(succ(esk4_2(esk1_0,X1)),esk1_0) ),
    inference(spm,[status(thm)],[c_0_37,c_0_38]) ).

fof(c_0_42,plain,
    ! [X31] : in(X31,succ(X31)),
    inference(variable_rename,[status(thm)],[t10_ordinal1]) ).

fof(c_0_43,plain,
    ! [X1,X2] :
      ( in(X1,X2)
     => ~ in(X2,X1) ),
    inference(fof_simplification,[status(thm)],[antisymmetry_r2_hidden]) ).

fof(c_0_44,plain,
    ! [X46,X47] :
      ( ~ in(X46,X47)
      | ~ empty(X47) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t7_boole])]) ).

cnf(c_0_45,plain,
    ( in(esk5_3(X1,X2,X3),X1)
    | ~ in(X3,X2)
    | X2 != union(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

fof(c_0_46,plain,
    ! [X38,X39] :
      ( ~ element(X38,X39)
      | empty(X39)
      | in(X38,X39) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t2_subset])]) ).

fof(c_0_47,plain,
    ! [X75] : element(esk11_1(X75),X75),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[existence_m1_subset_1])]) ).

cnf(c_0_48,plain,
    ( X1 = X2
    | ~ in(X1,singleton(X2)) ),
    inference(er,[status(thm)],[c_0_39]) ).

cnf(c_0_49,negated_conjecture,
    ( being_limit_ordinal(esk1_0)
    | subset(esk1_0,X1)
    | in(X2,union(esk1_0))
    | ~ in(X2,succ(esk4_2(esk1_0,X1))) ),
    inference(spm,[status(thm)],[c_0_40,c_0_41]) ).

cnf(c_0_50,plain,
    in(X1,succ(X1)),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

fof(c_0_51,plain,
    ! [X8,X9] :
      ( ~ in(X8,X9)
      | ~ in(X9,X8) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_43])]) ).

cnf(c_0_52,plain,
    ( in(X1,esk5_3(X2,X3,X1))
    | ~ in(X1,X3)
    | X3 != union(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_53,plain,
    ( ~ in(X1,X2)
    | ~ empty(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_44]) ).

cnf(c_0_54,plain,
    ( in(esk5_3(X1,union(X1),X2),X1)
    | ~ in(X2,union(X1)) ),
    inference(er,[status(thm)],[c_0_45]) ).

cnf(c_0_55,plain,
    ( empty(X2)
    | in(X1,X2)
    | ~ element(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_46]) ).

cnf(c_0_56,plain,
    element(esk11_1(X1),X1),
    inference(split_conjunct,[status(thm)],[c_0_47]) ).

fof(c_0_57,plain,
    ! [X67,X68] :
      ( ( subset(X67,X68)
        | ~ proper_subset(X67,X68) )
      & ( X67 != X68
        | ~ proper_subset(X67,X68) )
      & ( ~ subset(X67,X68)
        | X67 = X68
        | proper_subset(X67,X68) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d8_xboole_0])])]) ).

cnf(c_0_58,plain,
    ( subset(X1,X2)
    | ~ in(esk4_2(X1,X2),X2) ),
    inference(split_conjunct,[status(thm)],[c_0_27]) ).

cnf(c_0_59,plain,
    ( esk4_2(singleton(X1),X2) = X1
    | subset(singleton(X1),X2) ),
    inference(spm,[status(thm)],[c_0_48,c_0_30]) ).

cnf(c_0_60,negated_conjecture,
    ( being_limit_ordinal(esk1_0)
    | subset(esk1_0,X1)
    | in(esk4_2(esk1_0,X1),union(esk1_0)) ),
    inference(spm,[status(thm)],[c_0_49,c_0_50]) ).

fof(c_0_61,plain,
    ! [X64] :
      ( ( ~ being_limit_ordinal(X64)
        | X64 = union(X64) )
      & ( X64 != union(X64)
        | being_limit_ordinal(X64) ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d6_ordinal1])]) ).

cnf(c_0_62,plain,
    ( ~ in(X1,X2)
    | ~ in(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_51]) ).

cnf(c_0_63,plain,
    ( in(X1,esk5_3(X2,union(X2),X1))
    | ~ in(X1,union(X2)) ),
    inference(er,[status(thm)],[c_0_52]) ).

fof(c_0_64,plain,
    ! [X91] :
      ( ~ empty(X91)
      | X91 = empty_set ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t6_boole])]) ).

cnf(c_0_65,plain,
    ( ~ empty(X1)
    | ~ in(X2,union(X1)) ),
    inference(spm,[status(thm)],[c_0_53,c_0_54]) ).

cnf(c_0_66,plain,
    ( empty(X1)
    | in(esk11_1(X1),X1) ),
    inference(spm,[status(thm)],[c_0_55,c_0_56]) ).

cnf(c_0_67,plain,
    ( X1 = X2
    | proper_subset(X1,X2)
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_57]) ).

cnf(c_0_68,plain,
    ( subset(singleton(X1),X2)
    | ~ in(X1,X2) ),
    inference(spm,[status(thm)],[c_0_58,c_0_59]) ).

fof(c_0_69,plain,
    ! [X34,X35] :
      ( ~ epsilon_transitive(X34)
      | ~ ordinal(X35)
      | ~ proper_subset(X34,X35)
      | in(X34,X35) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t21_ordinal1])])]) ).

cnf(c_0_70,negated_conjecture,
    ( being_limit_ordinal(esk1_0)
    | subset(esk1_0,union(esk1_0)) ),
    inference(spm,[status(thm)],[c_0_58,c_0_60]) ).

cnf(c_0_71,plain,
    ( X1 = union(X1)
    | ~ being_limit_ordinal(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_61]) ).

cnf(c_0_72,plain,
    ( ~ in(esk5_3(X1,union(X1),X2),X2)
    | ~ in(X2,union(X1)) ),
    inference(spm,[status(thm)],[c_0_62,c_0_63]) ).

cnf(c_0_73,plain,
    ( X1 = empty_set
    | ~ empty(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_64]) ).

cnf(c_0_74,plain,
    ( empty(union(X1))
    | ~ empty(X1) ),
    inference(spm,[status(thm)],[c_0_65,c_0_66]) ).

cnf(c_0_75,plain,
    ( singleton(X1) = X2
    | proper_subset(singleton(X1),X2)
    | ~ in(X1,X2) ),
    inference(spm,[status(thm)],[c_0_67,c_0_68]) ).

cnf(c_0_76,negated_conjecture,
    ( in(esk2_0,esk1_0)
    | ~ being_limit_ordinal(esk1_0) ),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_77,plain,
    ( in(X1,X2)
    | ~ epsilon_transitive(X1)
    | ~ ordinal(X2)
    | ~ proper_subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_69]) ).

cnf(c_0_78,negated_conjecture,
    ( union(esk1_0) = esk1_0
    | proper_subset(esk1_0,union(esk1_0)) ),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_67,c_0_70]),c_0_71]) ).

cnf(c_0_79,plain,
    ~ in(X1,union(X1)),
    inference(spm,[status(thm)],[c_0_72,c_0_54]) ).

fof(c_0_80,plain,
    ! [X56] :
      ( ( epsilon_transitive(union(X56))
        | ~ ordinal(X56) )
      & ( epsilon_connected(union(X56))
        | ~ ordinal(X56) )
      & ( ordinal(union(X56))
        | ~ ordinal(X56) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[fc4_ordinal1])])]) ).

fof(c_0_81,plain,
    ! [X72,X73,X74] :
      ( ~ subset(X72,X73)
      | ~ subset(X74,X73)
      | subset(set_union2(X72,X74),X73) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t8_xboole_1])]) ).

cnf(c_0_82,plain,
    ( union(X1) = empty_set
    | ~ empty(X1) ),
    inference(spm,[status(thm)],[c_0_73,c_0_74]) ).

cnf(c_0_83,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | proper_subset(singleton(esk2_0),esk1_0)
    | ~ being_limit_ordinal(esk1_0) ),
    inference(spm,[status(thm)],[c_0_75,c_0_76]) ).

cnf(c_0_84,plain,
    ( being_limit_ordinal(X1)
    | X1 != union(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_61]) ).

cnf(c_0_85,negated_conjecture,
    ( union(esk1_0) = esk1_0
    | ~ epsilon_transitive(esk1_0)
    | ~ ordinal(union(esk1_0)) ),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_77,c_0_78]),c_0_79]) ).

cnf(c_0_86,plain,
    ( ordinal(union(X1))
    | ~ ordinal(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_80]) ).

cnf(c_0_87,plain,
    ( in(X3,X2)
    | ~ subset(X1,X2)
    | ~ in(X3,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_27]) ).

cnf(c_0_88,plain,
    ( subset(set_union2(X1,X3),X2)
    | ~ subset(X1,X2)
    | ~ subset(X3,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_81]) ).

cnf(c_0_89,plain,
    ( ~ empty(X1)
    | ~ in(X2,empty_set) ),
    inference(spm,[status(thm)],[c_0_65,c_0_82]) ).

cnf(c_0_90,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | proper_subset(singleton(esk2_0),esk1_0)
    | union(esk1_0) != esk1_0 ),
    inference(spm,[status(thm)],[c_0_83,c_0_84]) ).

cnf(c_0_91,negated_conjecture,
    ( union(esk1_0) = esk1_0
    | ~ epsilon_transitive(esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_85,c_0_86]),c_0_34])]) ).

fof(c_0_92,plain,
    ! [X51] :
      ( ( epsilon_transitive(X51)
        | ~ ordinal(X51) )
      & ( epsilon_connected(X51)
        | ~ ordinal(X51) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[cc1_ordinal1])])]) ).

cnf(c_0_93,plain,
    ( in(X1,X3)
    | X1 != X2
    | X3 != singleton(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_35]) ).

cnf(c_0_94,plain,
    ( in(X1,X2)
    | ~ subset(X3,X2)
    | ~ subset(X4,X2)
    | ~ in(X1,set_union2(X4,X3)) ),
    inference(spm,[status(thm)],[c_0_87,c_0_88]) ).

cnf(c_0_95,plain,
    ( subset(empty_set,X1)
    | ~ empty(X2) ),
    inference(spm,[status(thm)],[c_0_89,c_0_30]) ).

cnf(c_0_96,plain,
    empty(empty_set),
    inference(split_conjunct,[status(thm)],[fc2_ordinal1]) ).

fof(c_0_97,plain,
    ! [X99] : set_union2(X99,empty_set) = X99,
    inference(variable_rename,[status(thm)],[t1_boole]) ).

cnf(c_0_98,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | proper_subset(singleton(esk2_0),esk1_0)
    | ~ epsilon_transitive(esk1_0) ),
    inference(spm,[status(thm)],[c_0_90,c_0_91]) ).

cnf(c_0_99,plain,
    ( epsilon_transitive(X1)
    | ~ ordinal(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_92]) ).

cnf(c_0_100,plain,
    in(X1,singleton(X1)),
    inference(er,[status(thm)],[inference(er,[status(thm)],[c_0_93])]) ).

cnf(c_0_101,plain,
    ( empty(set_union2(X1,X2))
    | in(esk11_1(set_union2(X1,X2)),X3)
    | ~ subset(X2,X3)
    | ~ subset(X1,X3) ),
    inference(spm,[status(thm)],[c_0_94,c_0_66]) ).

cnf(c_0_102,plain,
    subset(empty_set,X1),
    inference(spm,[status(thm)],[c_0_95,c_0_96]) ).

cnf(c_0_103,plain,
    set_union2(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[c_0_97]) ).

cnf(c_0_104,plain,
    ( subset(X1,X2)
    | ~ proper_subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_57]) ).

cnf(c_0_105,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | proper_subset(singleton(esk2_0),esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_98,c_0_99]),c_0_34])]) ).

cnf(c_0_106,plain,
    ~ empty(singleton(X1)),
    inference(spm,[status(thm)],[c_0_53,c_0_100]) ).

fof(c_0_107,plain,
    ! [X10,X11,X12] :
      ( ( ~ epsilon_transitive(X10)
        | ~ in(X11,X10)
        | subset(X11,X10) )
      & ( in(esk3_1(X12),X12)
        | epsilon_transitive(X12) )
      & ( ~ subset(esk3_1(X12),X12)
        | epsilon_transitive(X12) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d2_ordinal1])])])])])]) ).

cnf(c_0_108,plain,
    ( empty(X1)
    | in(esk11_1(X1),X2)
    | ~ subset(X1,X2) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_101,c_0_102]),c_0_103]),c_0_103]) ).

cnf(c_0_109,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | subset(singleton(esk2_0),esk1_0) ),
    inference(spm,[status(thm)],[c_0_104,c_0_105]) ).

cnf(c_0_110,plain,
    esk11_1(singleton(X1)) = X1,
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_48,c_0_66]),c_0_106]) ).

fof(c_0_111,plain,
    ! [X48] : succ(X48) = set_union2(X48,singleton(X48)),
    inference(variable_rename,[status(thm)],[d1_ordinal1]) ).

cnf(c_0_112,plain,
    ( subset(X2,X1)
    | ~ epsilon_transitive(X1)
    | ~ in(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_107]) ).

cnf(c_0_113,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | in(esk2_0,esk1_0) ),
    inference(sr,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_108,c_0_109]),c_0_110]),c_0_106]) ).

cnf(c_0_114,plain,
    succ(X1) = set_union2(X1,singleton(X1)),
    inference(split_conjunct,[status(thm)],[c_0_111]) ).

cnf(c_0_115,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | subset(esk2_0,esk1_0)
    | ~ epsilon_transitive(esk1_0) ),
    inference(spm,[status(thm)],[c_0_112,c_0_113]) ).

cnf(c_0_116,plain,
    ( subset(succ(X1),X2)
    | ~ subset(singleton(X1),X2)
    | ~ subset(X1,X2) ),
    inference(spm,[status(thm)],[c_0_88,c_0_114]) ).

cnf(c_0_117,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | subset(esk2_0,esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_115,c_0_99]),c_0_34])]) ).

cnf(c_0_118,negated_conjecture,
    ( ordinal(esk2_0)
    | ~ being_limit_ordinal(esk1_0) ),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_119,plain,
    ( X2 = union(X1)
    | ~ in(esk6_2(X1,X2),X2)
    | ~ in(esk6_2(X1,X2),X3)
    | ~ in(X3,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_120,plain,
    ( in(esk7_2(X1,X2),X1)
    | in(esk6_2(X1,X2),X2)
    | X2 = union(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_121,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | subset(succ(esk2_0),esk1_0) ),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_116,c_0_109]),c_0_117]) ).

fof(c_0_122,plain,
    ! [X1] :
      ( ordinal(X1)
     => ( ~ empty(succ(X1))
        & epsilon_transitive(succ(X1))
        & epsilon_connected(succ(X1))
        & ordinal(succ(X1)) ) ),
    inference(fof_simplification,[status(thm)],[fc3_ordinal1]) ).

cnf(c_0_123,negated_conjecture,
    ( ordinal(esk2_0)
    | union(esk1_0) != esk1_0 ),
    inference(spm,[status(thm)],[c_0_118,c_0_84]) ).

cnf(c_0_124,plain,
    ( X1 = union(X2)
    | in(esk7_2(X2,X1),X2)
    | ~ in(X1,X2) ),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_119,c_0_120]),c_0_120]) ).

cnf(c_0_125,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | succ(esk2_0) = esk1_0
    | proper_subset(succ(esk2_0),esk1_0) ),
    inference(spm,[status(thm)],[c_0_67,c_0_121]) ).

fof(c_0_126,plain,
    ! [X50] :
      ( ( ~ empty(succ(X50))
        | ~ ordinal(X50) )
      & ( epsilon_transitive(succ(X50))
        | ~ ordinal(X50) )
      & ( epsilon_connected(succ(X50))
        | ~ ordinal(X50) )
      & ( ordinal(succ(X50))
        | ~ ordinal(X50) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_122])])]) ).

cnf(c_0_127,negated_conjecture,
    ( ordinal(esk2_0)
    | ~ epsilon_transitive(esk1_0) ),
    inference(spm,[status(thm)],[c_0_123,c_0_91]) ).

cnf(c_0_128,negated_conjecture,
    ( subset(esk2_0,esk1_0)
    | ~ being_limit_ordinal(esk1_0)
    | ~ epsilon_transitive(esk1_0) ),
    inference(spm,[status(thm)],[c_0_112,c_0_76]) ).

cnf(c_0_129,negated_conjecture,
    ( union(esk1_0) = esk2_0
    | in(esk7_2(esk1_0,esk2_0),esk1_0)
    | ~ being_limit_ordinal(esk1_0) ),
    inference(spm,[status(thm)],[c_0_124,c_0_76]) ).

cnf(c_0_130,negated_conjecture,
    ( succ(esk2_0) = esk1_0
    | singleton(esk2_0) = esk1_0
    | in(succ(esk2_0),esk1_0)
    | ~ epsilon_transitive(succ(esk2_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_77,c_0_125]),c_0_34])]) ).

cnf(c_0_131,plain,
    ( epsilon_transitive(succ(X1))
    | ~ ordinal(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_126]) ).

cnf(c_0_132,negated_conjecture,
    ordinal(esk2_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_127,c_0_99]),c_0_34])]) ).

cnf(c_0_133,negated_conjecture,
    ( in(X1,esk1_0)
    | ~ being_limit_ordinal(esk1_0)
    | ~ epsilon_transitive(esk1_0)
    | ~ in(X1,esk2_0) ),
    inference(spm,[status(thm)],[c_0_87,c_0_128]) ).

cnf(c_0_134,negated_conjecture,
    ( union(esk1_0) = esk2_0
    | in(esk7_2(esk1_0,esk2_0),esk1_0)
    | union(esk1_0) != esk1_0 ),
    inference(spm,[status(thm)],[c_0_129,c_0_84]) ).

cnf(c_0_135,negated_conjecture,
    ( ~ in(succ(esk2_0),esk1_0)
    | ~ being_limit_ordinal(esk1_0) ),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_136,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | succ(esk2_0) = esk1_0
    | in(succ(esk2_0),esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_130,c_0_131]),c_0_132])]) ).

cnf(c_0_137,negated_conjecture,
    ( subset(esk2_0,X1)
    | in(esk4_2(esk2_0,X1),esk1_0)
    | ~ being_limit_ordinal(esk1_0)
    | ~ epsilon_transitive(esk1_0) ),
    inference(spm,[status(thm)],[c_0_133,c_0_30]) ).

fof(c_0_138,plain,
    ! [X54,X55] :
      ( ~ ordinal(X54)
      | ~ ordinal(X55)
      | ordinal_subset(X54,X55)
      | ordinal_subset(X55,X54) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[connectedness_r1_ordinal1])]) ).

cnf(c_0_139,negated_conjecture,
    ( esk2_0 = esk1_0
    | in(esk7_2(esk1_0,esk2_0),esk1_0)
    | ~ epsilon_transitive(esk1_0) ),
    inference(spm,[status(thm)],[c_0_134,c_0_91]) ).

fof(c_0_140,plain,
    ! [X65,X66] :
      ( ( subset(X65,X66)
        | X65 != X66 )
      & ( subset(X66,X65)
        | X65 != X66 )
      & ( ~ subset(X65,X66)
        | ~ subset(X66,X65)
        | X65 = X66 ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])]) ).

cnf(c_0_141,plain,
    ( singleton(X1) = succ(X1)
    | proper_subset(singleton(X1),succ(X1)) ),
    inference(spm,[status(thm)],[c_0_75,c_0_50]) ).

cnf(c_0_142,negated_conjecture,
    ( succ(esk2_0) = esk1_0
    | singleton(esk2_0) = esk1_0
    | ~ being_limit_ordinal(esk1_0) ),
    inference(spm,[status(thm)],[c_0_135,c_0_136]) ).

cnf(c_0_143,negated_conjecture,
    ( subset(esk2_0,X1)
    | in(esk4_2(esk2_0,X1),esk1_0)
    | union(esk1_0) != esk1_0
    | ~ epsilon_transitive(esk1_0) ),
    inference(spm,[status(thm)],[c_0_137,c_0_84]) ).

cnf(c_0_144,plain,
    ( ordinal_subset(X1,X2)
    | ordinal_subset(X2,X1)
    | ~ ordinal(X1)
    | ~ ordinal(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_138]) ).

cnf(c_0_145,negated_conjecture,
    ( esk2_0 = esk1_0
    | in(esk7_2(esk1_0,esk2_0),esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_139,c_0_99]),c_0_34])]) ).

cnf(c_0_146,plain,
    ( X1 = X2
    | ~ subset(X1,X2)
    | ~ subset(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_140]) ).

cnf(c_0_147,plain,
    ( singleton(X1) = succ(X1)
    | subset(singleton(X1),succ(X1)) ),
    inference(spm,[status(thm)],[c_0_104,c_0_141]) ).

cnf(c_0_148,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | succ(esk2_0) = esk1_0
    | union(esk1_0) != esk1_0 ),
    inference(spm,[status(thm)],[c_0_142,c_0_84]) ).

cnf(c_0_149,negated_conjecture,
    ( subset(esk2_0,X1)
    | in(esk4_2(esk2_0,X1),esk1_0)
    | ~ epsilon_transitive(esk1_0) ),
    inference(spm,[status(thm)],[c_0_143,c_0_91]) ).

fof(c_0_150,plain,
    ! [X60,X61] :
      ( ( ~ ordinal_subset(X60,X61)
        | subset(X60,X61)
        | ~ ordinal(X60)
        | ~ ordinal(X61) )
      & ( ~ subset(X60,X61)
        | ordinal_subset(X60,X61)
        | ~ ordinal(X60)
        | ~ ordinal(X61) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[redefinition_r1_ordinal1])])]) ).

cnf(c_0_151,negated_conjecture,
    ( ordinal_subset(X1,esk2_0)
    | ordinal_subset(esk2_0,X1)
    | ~ ordinal(X1) ),
    inference(spm,[status(thm)],[c_0_144,c_0_132]) ).

cnf(c_0_152,negated_conjecture,
    ( esk2_0 = esk1_0
    | ordinal(esk7_2(esk1_0,esk2_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_145]),c_0_34])]) ).

cnf(c_0_153,plain,
    ( singleton(X1) = succ(X1)
    | ~ subset(succ(X1),singleton(X1)) ),
    inference(spm,[status(thm)],[c_0_146,c_0_147]) ).

cnf(c_0_154,plain,
    ( subset(succ(X1),X2)
    | ~ subset(X1,X2)
    | ~ in(X1,X2) ),
    inference(spm,[status(thm)],[c_0_116,c_0_68]) ).

cnf(c_0_155,negated_conjecture,
    ( succ(esk2_0) = esk1_0
    | singleton(esk2_0) = esk1_0
    | ~ epsilon_transitive(esk1_0) ),
    inference(spm,[status(thm)],[c_0_148,c_0_91]) ).

cnf(c_0_156,negated_conjecture,
    ( subset(esk2_0,X1)
    | in(esk4_2(esk2_0,X1),esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_149,c_0_99]),c_0_34])]) ).

cnf(c_0_157,plain,
    ( subset(X1,X2)
    | ~ ordinal_subset(X1,X2)
    | ~ ordinal(X1)
    | ~ ordinal(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_150]) ).

cnf(c_0_158,negated_conjecture,
    ( esk2_0 = esk1_0
    | ordinal_subset(esk2_0,esk7_2(esk1_0,esk2_0))
    | ordinal_subset(esk7_2(esk1_0,esk2_0),esk2_0) ),
    inference(spm,[status(thm)],[c_0_151,c_0_152]) ).

cnf(c_0_159,plain,
    ( singleton(X1) = succ(X1)
    | ~ subset(X1,singleton(X1)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_153,c_0_154]),c_0_100])]) ).

cnf(c_0_160,negated_conjecture,
    ( singleton(esk2_0) = esk1_0
    | succ(esk2_0) = esk1_0 ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_155,c_0_99]),c_0_34])]) ).

cnf(c_0_161,negated_conjecture,
    subset(esk2_0,esk1_0),
    inference(spm,[status(thm)],[c_0_58,c_0_156]) ).

cnf(c_0_162,negated_conjecture,
    ( esk2_0 = esk1_0
    | subset(esk7_2(esk1_0,esk2_0),esk2_0)
    | ordinal_subset(esk2_0,esk7_2(esk1_0,esk2_0)) ),
    inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_157,c_0_158]),c_0_132])]),c_0_152]) ).

cnf(c_0_163,negated_conjecture,
    succ(esk2_0) = esk1_0,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_159,c_0_160]),c_0_161])]) ).

cnf(c_0_164,negated_conjecture,
    ( esk2_0 = esk1_0
    | subset(esk7_2(esk1_0,esk2_0),esk2_0)
    | subset(esk2_0,esk7_2(esk1_0,esk2_0)) ),
    inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_157,c_0_162]),c_0_132])]),c_0_152]) ).

cnf(c_0_165,negated_conjecture,
    epsilon_transitive(esk1_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_131,c_0_163]),c_0_132])]) ).

cnf(c_0_166,negated_conjecture,
    ( esk2_0 = esk1_0
    | subset(esk2_0,esk7_2(esk1_0,esk2_0))
    | in(X1,esk2_0)
    | ~ in(X1,esk7_2(esk1_0,esk2_0)) ),
    inference(spm,[status(thm)],[c_0_87,c_0_164]) ).

cnf(c_0_167,plain,
    ( in(esk6_2(X1,X2),esk7_2(X1,X2))
    | in(esk6_2(X1,X2),X2)
    | X2 = union(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_168,negated_conjecture,
    union(esk1_0) = esk1_0,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_91,c_0_165])]) ).

cnf(c_0_169,negated_conjecture,
    ( esk2_0 = esk1_0
    | subset(esk2_0,esk7_2(esk1_0,esk2_0))
    | in(esk6_2(esk1_0,esk2_0),esk2_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_166,c_0_167]),c_0_168])]) ).

cnf(c_0_170,negated_conjecture,
    in(esk2_0,esk1_0),
    inference(spm,[status(thm)],[c_0_50,c_0_163]) ).

cnf(c_0_171,negated_conjecture,
    ( esk2_0 = esk1_0
    | subset(esk2_0,esk7_2(esk1_0,esk2_0)) ),
    inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_119,c_0_169]),c_0_168]),c_0_170])]),c_0_169]) ).

cnf(c_0_172,negated_conjecture,
    ( esk7_2(esk1_0,esk2_0) = esk2_0
    | esk2_0 = esk1_0
    | proper_subset(esk2_0,esk7_2(esk1_0,esk2_0)) ),
    inference(spm,[status(thm)],[c_0_67,c_0_171]) ).

cnf(c_0_173,negated_conjecture,
    ( esk2_0 = esk1_0
    | subset(esk7_2(esk1_0,esk2_0),esk1_0)
    | ~ epsilon_transitive(esk1_0) ),
    inference(spm,[status(thm)],[c_0_112,c_0_145]) ).

cnf(c_0_174,negated_conjecture,
    ( esk7_2(esk1_0,esk2_0) = esk2_0
    | esk2_0 = esk1_0
    | in(esk2_0,esk7_2(esk1_0,esk2_0))
    | ~ epsilon_transitive(esk2_0) ),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_77,c_0_172]),c_0_152]) ).

cnf(c_0_175,negated_conjecture,
    ( esk2_0 = esk1_0
    | subset(esk7_2(esk1_0,esk2_0),esk1_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_173,c_0_99]),c_0_34])]) ).

cnf(c_0_176,negated_conjecture,
    ( subset(esk1_0,X1)
    | ~ subset(esk2_0,X1)
    | ~ in(esk2_0,X1) ),
    inference(spm,[status(thm)],[c_0_154,c_0_163]) ).

cnf(c_0_177,negated_conjecture,
    ( esk7_2(esk1_0,esk2_0) = esk2_0
    | esk2_0 = esk1_0
    | in(esk2_0,esk7_2(esk1_0,esk2_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_174,c_0_99]),c_0_132])]) ).

cnf(c_0_178,negated_conjecture,
    ( esk7_2(esk1_0,esk2_0) = esk1_0
    | esk2_0 = esk1_0
    | ~ subset(esk1_0,esk7_2(esk1_0,esk2_0)) ),
    inference(spm,[status(thm)],[c_0_146,c_0_175]) ).

cnf(c_0_179,negated_conjecture,
    ( esk7_2(esk1_0,esk2_0) = esk2_0
    | esk2_0 = esk1_0
    | subset(esk1_0,esk7_2(esk1_0,esk2_0)) ),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_176,c_0_177]),c_0_171]) ).

cnf(c_0_180,negated_conjecture,
    ( esk7_2(esk1_0,esk2_0) = esk2_0
    | esk7_2(esk1_0,esk2_0) = esk1_0
    | esk2_0 = esk1_0 ),
    inference(spm,[status(thm)],[c_0_178,c_0_179]) ).

cnf(c_0_181,negated_conjecture,
    ( esk7_2(esk1_0,esk2_0) = esk1_0
    | esk2_0 = esk1_0
    | in(esk6_2(esk1_0,esk2_0),esk2_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_167,c_0_180]),c_0_168])]) ).

cnf(c_0_182,negated_conjecture,
    ( ~ epsilon_transitive(esk1_0)
    | ~ in(esk1_0,esk1_0) ),
    inference(spm,[status(thm)],[c_0_79,c_0_91]) ).

cnf(c_0_183,negated_conjecture,
    ( esk7_2(esk1_0,esk2_0) = esk1_0
    | esk2_0 = esk1_0 ),
    inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_119,c_0_181]),c_0_168]),c_0_170])]),c_0_181]) ).

cnf(c_0_184,negated_conjecture,
    ~ in(esk1_0,esk1_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_182,c_0_165])]) ).

cnf(c_0_185,negated_conjecture,
    esk2_0 = esk1_0,
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_145,c_0_183]),c_0_184]) ).

cnf(c_0_186,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[inference(rw,[status(thm)],[c_0_170,c_0_185]),c_0_184]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.10  % Problem    : SEU237+3 : TPTP v8.1.2. Released v3.2.0.
% 0.00/0.11  % Command    : run_E %s %d THM
% 0.12/0.31  % Computer : n025.cluster.edu
% 0.12/0.31  % Model    : x86_64 x86_64
% 0.12/0.31  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.31  % Memory   : 8042.1875MB
% 0.12/0.31  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.31  % CPULimit   : 2400
% 0.12/0.31  % WCLimit    : 300
% 0.12/0.31  % DateTime   : Mon Oct  2 08:24:51 EDT 2023
% 0.12/0.31  % CPUTime    : 
% 0.15/0.43  Running first-order model finding
% 0.15/0.43  Running: /export/starexec/sandbox/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --satauto-schedule=8 --cpu-limit=300 /export/starexec/sandbox/tmp/tmp.3r8XnzAjNK/E---3.1_29797.p
% 1778.62/229.15  # Version: 3.1pre001
% 1778.62/229.15  # Preprocessing class: FSLSSMSSSSSNFFN.
% 1778.62/229.15  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 1778.62/229.15  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 1778.62/229.15  # Starting new_bool_3 with 300s (1) cores
% 1778.62/229.15  # Starting new_bool_1 with 300s (1) cores
% 1778.62/229.15  # Starting sh5l with 300s (1) cores
% 1778.62/229.15  # sh5l with pid 29886 completed with status 0
% 1778.62/229.15  # Result found by sh5l
% 1778.62/229.15  # Preprocessing class: FSLSSMSSSSSNFFN.
% 1778.62/229.15  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 1778.62/229.15  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 1778.62/229.15  # Starting new_bool_3 with 300s (1) cores
% 1778.62/229.15  # Starting new_bool_1 with 300s (1) cores
% 1778.62/229.15  # Starting sh5l with 300s (1) cores
% 1778.62/229.15  # SinE strategy is gf500_gu_R04_F100_L20000
% 1778.62/229.15  # Search class: FGHSM-FFMM31-SFFFFFNN
% 1778.62/229.15  # Scheduled 11 strats onto 1 cores with 300 seconds (300 total)
% 1778.62/229.15  # Starting G-E--_208_B07----S_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with 28s (1) cores
% 1778.62/229.15  # G-E--_208_B07----S_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with pid 29889 completed with status 7
% 1778.62/229.15  # Starting sh5l with 31s (1) cores
% 1778.62/229.15  # sh5l with pid 29897 completed with status 7
% 1778.62/229.15  # Starting G-E--_302_C18_F1_URBAN_S5PRR_RG_S0Y with 28s (1) cores
% 1778.62/229.15  # G-E--_302_C18_F1_URBAN_S5PRR_RG_S0Y with pid 29901 completed with status 7
% 1778.62/229.15  # Starting G-E--_208_B07----D_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with 28s (1) cores
% 1778.62/229.15  # G-E--_208_B07----D_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with pid 29903 completed with status 7
% 1778.62/229.15  # Starting G-E--_208_B07----D_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 28s (1) cores
% 1778.62/229.15  # G-E--_208_B07----D_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with pid 29910 completed with status 7
% 1778.62/229.15  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_S4d with 28s (1) cores
% 1778.62/229.15  # G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_S4d with pid 29919 completed with status 7
% 1778.62/229.15  # Starting G-E--_301_C18_F1_URBAN_S5PRR_RG_S04AN with 28s (1) cores
% 1778.62/229.15  # G-E--_301_C18_F1_URBAN_S5PRR_RG_S04AN with pid 29971 completed with status 7
% 1778.62/229.15  # Starting U----_116Y_C05_02_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN with 28s (1) cores
% 1778.62/229.15  # U----_116Y_C05_02_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN with pid 29978 completed with status 0
% 1778.62/229.15  # Result found by U----_116Y_C05_02_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN
% 1778.62/229.15  # Preprocessing class: FSLSSMSSSSSNFFN.
% 1778.62/229.15  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 1778.62/229.15  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 1778.62/229.15  # Starting new_bool_3 with 300s (1) cores
% 1778.62/229.15  # Starting new_bool_1 with 300s (1) cores
% 1778.62/229.15  # Starting sh5l with 300s (1) cores
% 1778.62/229.15  # SinE strategy is gf500_gu_R04_F100_L20000
% 1778.62/229.15  # Search class: FGHSM-FFMM31-SFFFFFNN
% 1778.62/229.15  # Scheduled 11 strats onto 1 cores with 300 seconds (300 total)
% 1778.62/229.15  # Starting G-E--_208_B07----S_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with 28s (1) cores
% 1778.62/229.15  # G-E--_208_B07----S_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with pid 29889 completed with status 7
% 1778.62/229.15  # Starting sh5l with 31s (1) cores
% 1778.62/229.15  # sh5l with pid 29897 completed with status 7
% 1778.62/229.15  # Starting G-E--_302_C18_F1_URBAN_S5PRR_RG_S0Y with 28s (1) cores
% 1778.62/229.15  # G-E--_302_C18_F1_URBAN_S5PRR_RG_S0Y with pid 29901 completed with status 7
% 1778.62/229.15  # Starting G-E--_208_B07----D_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with 28s (1) cores
% 1778.62/229.15  # G-E--_208_B07----D_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with pid 29903 completed with status 7
% 1778.62/229.15  # Starting G-E--_208_B07----D_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 28s (1) cores
% 1778.62/229.15  # G-E--_208_B07----D_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with pid 29910 completed with status 7
% 1778.62/229.15  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_S4d with 28s (1) cores
% 1778.62/229.15  # G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_S4d with pid 29919 completed with status 7
% 1778.62/229.15  # Starting G-E--_301_C18_F1_URBAN_S5PRR_RG_S04AN with 28s (1) cores
% 1778.62/229.15  # G-E--_301_C18_F1_URBAN_S5PRR_RG_S04AN with pid 29971 completed with status 7
% 1778.62/229.15  # Starting U----_116Y_C05_02_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN with 28s (1) cores
% 1778.62/229.15  # Preprocessing time       : 0.003 s
% 1778.62/229.15  # Presaturation interreduction done
% 1778.62/229.15  
% 1778.62/229.15  # Proof found!
% 1778.62/229.15  # SZS status Theorem
% 1778.62/229.15  # SZS output start CNFRefutation
% See solution above
% 1778.62/229.15  # Parsed axioms                        : 61
% 1778.62/229.15  # Removed by relevancy pruning/SinE    : 1
% 1778.62/229.15  # Initial clauses                      : 124
% 1778.62/229.15  # Removed in clause preprocessing      : 2
% 1778.62/229.15  # Initial clauses in saturation        : 122
% 1778.62/229.15  # Processed clauses                    : 84371
% 1778.62/229.15  # ...of these trivial                  : 483
% 1778.62/229.15  # ...subsumed                          : 69819
% 1778.62/229.15  # ...remaining for further processing  : 14069
% 1778.62/229.15  # Other redundant clauses eliminated   : 21
% 1778.62/229.15  # Clauses deleted for lack of memory   : 0
% 1778.62/229.15  # Backward-subsumed                    : 2686
% 1778.62/229.15  # Backward-rewritten                   : 4508
% 1778.62/229.15  # Generated clauses                    : 985533
% 1778.62/229.15  # ...of the previous two non-redundant : 911542
% 1778.62/229.15  # ...aggressively subsumed             : 0
% 1778.62/229.15  # Contextual simplify-reflections      : 214
% 1778.62/229.15  # Paramodulations                      : 985303
% 1778.62/229.15  # Factorizations                       : 9
% 1778.62/229.15  # NegExts                              : 0
% 1778.62/229.15  # Equation resolutions                 : 21
% 1778.62/229.15  # Total rewrite steps                  : 274984
% 1778.62/229.15  # Propositional unsat checks           : 2
% 1778.62/229.15  #    Propositional check models        : 0
% 1778.62/229.15  #    Propositional check unsatisfiable : 0
% 1778.62/229.15  #    Propositional clauses             : 0
% 1778.62/229.15  #    Propositional clauses after purity: 0
% 1778.62/229.15  #    Propositional unsat core size     : 0
% 1778.62/229.15  #    Propositional preprocessing time  : 0.000
% 1778.62/229.15  #    Propositional encoding time       : 1.007
% 1778.62/229.15  #    Propositional solver time         : 1.148
% 1778.62/229.15  #    Success case prop preproc time    : 0.000
% 1778.62/229.15  #    Success case prop encoding time   : 0.000
% 1778.62/229.15  #    Success case prop solver time     : 0.000
% 1778.62/229.15  # Current number of processed clauses  : 6554
% 1778.62/229.15  #    Positive orientable unit clauses  : 175
% 1778.62/229.15  #    Positive unorientable unit clauses: 1
% 1778.62/229.15  #    Negative unit clauses             : 439
% 1778.62/229.15  #    Non-unit-clauses                  : 5939
% 1778.62/229.15  # Current number of unprocessed clauses: 806745
% 1778.62/229.15  # ...number of literals in the above   : 3047666
% 1778.62/229.15  # Current number of archived formulas  : 0
% 1778.62/229.15  # Current number of archived clauses   : 7507
% 1778.62/229.15  # Clause-clause subsumption calls (NU) : 14850866
% 1778.62/229.15  # Rec. Clause-clause subsumption calls : 7289348
% 1778.62/229.15  # Non-unit clause-clause subsumptions  : 45472
% 1778.62/229.15  # Unit Clause-clause subsumption calls : 304488
% 1778.62/229.15  # Rewrite failures with RHS unbound    : 0
% 1778.62/229.15  # BW rewrite match attempts            : 925
% 1778.62/229.15  # BW rewrite match successes           : 167
% 1778.62/229.15  # Condensation attempts                : 0
% 1778.62/229.15  # Condensation successes               : 0
% 1778.62/229.15  # Termbank termtop insertions          : 18815038
% 1778.62/229.15  
% 1778.62/229.15  # -------------------------------------------------
% 1778.62/229.15  # User time                : 216.363 s
% 1778.62/229.15  # System time              : 4.989 s
% 1778.62/229.15  # Total time               : 221.353 s
% 1778.62/229.15  # Maximum resident set size: 2064 pages
% 1778.62/229.15  
% 1778.62/229.15  # -------------------------------------------------
% 1778.62/229.15  # User time                : 216.375 s
% 1778.62/229.15  # System time              : 4.995 s
% 1778.62/229.15  # Total time               : 221.370 s
% 1778.62/229.15  # Maximum resident set size: 1728 pages
% 1778.62/229.15  % E---3.1 exiting
%------------------------------------------------------------------------------