TSTP Solution File: SEU170+2 by E---3.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E---3.1
% Problem  : SEU170+2 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n001.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 2400s
% WCLimit  : 300s
% DateTime : Tue Oct 10 19:25:05 EDT 2023

% Result   : Theorem 3.47s 0.89s
% Output   : CNFRefutation 3.47s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   19
%            Number of leaves      :   24
% Syntax   : Number of formulae    :  116 (  57 unt;   0 def)
%            Number of atoms       :  229 (  69 equ)
%            Maximal formula atoms :   12 (   1 avg)
%            Number of connectives :  191 (  78   ~;  64   |;  22   &)
%                                         (  12 <=>;  15  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   13 (   3 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    7 (   5 usr;   1 prp; 0-2 aty)
%            Number of functors    :   12 (  12 usr;   4 con; 0-2 aty)
%            Number of variables   :  184 (   8 sgn; 112   !;   2   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(t43_subset_1,conjecture,
    ! [X1,X2] :
      ( element(X2,powerset(X1))
     => ! [X3] :
          ( element(X3,powerset(X1))
         => ( disjoint(X2,X3)
          <=> subset(X2,subset_complement(X1,X3)) ) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t43_subset_1) ).

fof(d5_subset_1,axiom,
    ! [X1,X2] :
      ( element(X2,powerset(X1))
     => subset_complement(X1,X2) = set_difference(X1,X2) ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',d5_subset_1) ).

fof(dt_k3_subset_1,axiom,
    ! [X1,X2] :
      ( element(X2,powerset(X1))
     => element(subset_complement(X1,X2),powerset(X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',dt_k3_subset_1) ).

fof(involutiveness_k3_subset_1,axiom,
    ! [X1,X2] :
      ( element(X2,powerset(X1))
     => subset_complement(X1,subset_complement(X1,X2)) = X2 ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',involutiveness_k3_subset_1) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [X1,X2] : set_intersection2(X1,X2) = set_intersection2(X2,X1),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',commutativity_k3_xboole_0) ).

fof(t48_xboole_1,lemma,
    ! [X1,X2] : set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t48_xboole_1) ).

fof(t4_xboole_0,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] : ~ in(X3,set_intersection2(X1,X2)) )
      & ~ ( ? [X3] : in(X3,set_intersection2(X1,X2))
          & disjoint(X1,X2) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t4_xboole_0) ).

fof(t2_boole,axiom,
    ! [X1] : set_intersection2(X1,empty_set) = empty_set,
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t2_boole) ).

fof(d1_xboole_0,axiom,
    ! [X1] :
      ( X1 = empty_set
    <=> ! [X2] : ~ in(X2,X1) ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',d1_xboole_0) ).

fof(t39_xboole_1,lemma,
    ! [X1,X2] : set_union2(X1,set_difference(X2,X1)) = set_union2(X1,X2),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t39_xboole_1) ).

fof(t12_xboole_1,lemma,
    ! [X1,X2] :
      ( subset(X1,X2)
     => set_union2(X1,X2) = X2 ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t12_xboole_1) ).

fof(t3_boole,axiom,
    ! [X1] : set_difference(X1,empty_set) = X1,
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t3_boole) ).

fof(t40_xboole_1,lemma,
    ! [X1,X2] : set_difference(set_union2(X1,X2),X2) = set_difference(X1,X2),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t40_xboole_1) ).

fof(commutativity_k2_xboole_0,axiom,
    ! [X1,X2] : set_union2(X1,X2) = set_union2(X2,X1),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',commutativity_k2_xboole_0) ).

fof(t36_xboole_1,lemma,
    ! [X1,X2] : subset(set_difference(X1,X2),X1),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t36_xboole_1) ).

fof(symmetry_r1_xboole_0,axiom,
    ! [X1,X2] :
      ( disjoint(X1,X2)
     => disjoint(X2,X1) ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',symmetry_r1_xboole_0) ).

fof(t1_boole,axiom,
    ! [X1] : set_union2(X1,empty_set) = X1,
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t1_boole) ).

fof(d7_xboole_0,axiom,
    ! [X1,X2] :
      ( disjoint(X1,X2)
    <=> set_intersection2(X1,X2) = empty_set ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',d7_xboole_0) ).

fof(t63_xboole_1,lemma,
    ! [X1,X2,X3] :
      ( ( subset(X1,X2)
        & disjoint(X2,X3) )
     => disjoint(X1,X3) ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t63_xboole_1) ).

fof(t83_xboole_1,lemma,
    ! [X1,X2] :
      ( disjoint(X1,X2)
    <=> set_difference(X1,X2) = X1 ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t83_xboole_1) ).

fof(d2_subset_1,axiom,
    ! [X1,X2] :
      ( ( ~ empty(X1)
       => ( element(X2,X1)
        <=> in(X2,X1) ) )
      & ( empty(X1)
       => ( element(X2,X1)
        <=> empty(X2) ) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',d2_subset_1) ).

fof(fc1_subset_1,axiom,
    ! [X1] : ~ empty(powerset(X1)),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',fc1_subset_1) ).

fof(d1_zfmisc_1,axiom,
    ! [X1,X2] :
      ( X2 = powerset(X1)
    <=> ! [X3] :
          ( in(X3,X2)
        <=> subset(X3,X1) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',d1_zfmisc_1) ).

fof(t33_xboole_1,lemma,
    ! [X1,X2,X3] :
      ( subset(X1,X2)
     => subset(set_difference(X1,X3),set_difference(X2,X3)) ),
    file('/export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p',t33_xboole_1) ).

fof(c_0_24,negated_conjecture,
    ~ ! [X1,X2] :
        ( element(X2,powerset(X1))
       => ! [X3] :
            ( element(X3,powerset(X1))
           => ( disjoint(X2,X3)
            <=> subset(X2,subset_complement(X1,X3)) ) ) ),
    inference(assume_negation,[status(cth)],[t43_subset_1]) ).

fof(c_0_25,plain,
    ! [X109,X110] :
      ( ~ element(X110,powerset(X109))
      | subset_complement(X109,X110) = set_difference(X109,X110) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d5_subset_1])]) ).

fof(c_0_26,negated_conjecture,
    ( element(esk26_0,powerset(esk25_0))
    & element(esk27_0,powerset(esk25_0))
    & ( ~ disjoint(esk26_0,esk27_0)
      | ~ subset(esk26_0,subset_complement(esk25_0,esk27_0)) )
    & ( disjoint(esk26_0,esk27_0)
      | subset(esk26_0,subset_complement(esk25_0,esk27_0)) ) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_24])])]) ).

fof(c_0_27,plain,
    ! [X117,X118] :
      ( ~ element(X118,powerset(X117))
      | element(subset_complement(X117,X118),powerset(X117)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[dt_k3_subset_1])]) ).

cnf(c_0_28,plain,
    ( subset_complement(X2,X1) = set_difference(X2,X1)
    | ~ element(X1,powerset(X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_25]) ).

cnf(c_0_29,negated_conjecture,
    element(esk27_0,powerset(esk25_0)),
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

fof(c_0_30,plain,
    ! [X130,X131] :
      ( ~ element(X131,powerset(X130))
      | subset_complement(X130,subset_complement(X130,X131)) = X131 ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[involutiveness_k3_subset_1])]) ).

fof(c_0_31,plain,
    ! [X15,X16] : set_intersection2(X15,X16) = set_intersection2(X16,X15),
    inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0]) ).

fof(c_0_32,lemma,
    ! [X246,X247] : set_difference(X246,set_difference(X246,X247)) = set_intersection2(X246,X247),
    inference(variable_rename,[status(thm)],[t48_xboole_1]) ).

fof(c_0_33,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] : ~ in(X3,set_intersection2(X1,X2)) )
      & ~ ( ? [X3] : in(X3,set_intersection2(X1,X2))
          & disjoint(X1,X2) ) ),
    inference(fof_simplification,[status(thm)],[t4_xboole_0]) ).

fof(c_0_34,plain,
    ! [X204] : set_intersection2(X204,empty_set) = empty_set,
    inference(variable_rename,[status(thm)],[t2_boole]) ).

fof(c_0_35,plain,
    ! [X1] :
      ( X1 = empty_set
    <=> ! [X2] : ~ in(X2,X1) ),
    inference(fof_simplification,[status(thm)],[d1_xboole_0]) ).

fof(c_0_36,lemma,
    ! [X225,X226] : set_union2(X225,set_difference(X226,X225)) = set_union2(X225,X226),
    inference(variable_rename,[status(thm)],[t39_xboole_1]) ).

fof(c_0_37,lemma,
    ! [X182,X183] :
      ( ~ subset(X182,X183)
      | set_union2(X182,X183) = X183 ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])]) ).

cnf(c_0_38,plain,
    ( element(subset_complement(X2,X1),powerset(X2))
    | ~ element(X1,powerset(X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_27]) ).

cnf(c_0_39,negated_conjecture,
    subset_complement(esk25_0,esk27_0) = set_difference(esk25_0,esk27_0),
    inference(spm,[status(thm)],[c_0_28,c_0_29]) ).

cnf(c_0_40,plain,
    ( subset_complement(X2,subset_complement(X2,X1)) = X1
    | ~ element(X1,powerset(X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

cnf(c_0_41,plain,
    set_intersection2(X1,X2) = set_intersection2(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_42,lemma,
    set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_32]) ).

fof(c_0_43,lemma,
    ! [X249,X250,X252,X253,X254] :
      ( ( disjoint(X249,X250)
        | in(esk28_2(X249,X250),set_intersection2(X249,X250)) )
      & ( ~ in(X254,set_intersection2(X252,X253))
        | ~ disjoint(X252,X253) ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_33])])])])]) ).

cnf(c_0_44,plain,
    set_intersection2(X1,empty_set) = empty_set,
    inference(split_conjunct,[status(thm)],[c_0_34]) ).

fof(c_0_45,plain,
    ! [X229] : set_difference(X229,empty_set) = X229,
    inference(variable_rename,[status(thm)],[t3_boole]) ).

fof(c_0_46,plain,
    ! [X26,X27,X28] :
      ( ( X26 != empty_set
        | ~ in(X27,X26) )
      & ( in(esk2_1(X28),X28)
        | X28 = empty_set ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_35])])])])]) ).

fof(c_0_47,lemma,
    ! [X237,X238] : set_difference(set_union2(X237,X238),X238) = set_difference(X237,X238),
    inference(variable_rename,[status(thm)],[t40_xboole_1]) ).

cnf(c_0_48,lemma,
    set_union2(X1,set_difference(X2,X1)) = set_union2(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_36]) ).

cnf(c_0_49,lemma,
    ( set_union2(X1,X2) = X2
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_50,negated_conjecture,
    element(set_difference(esk25_0,esk27_0),powerset(esk25_0)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38,c_0_39]),c_0_29])]) ).

cnf(c_0_51,negated_conjecture,
    subset_complement(esk25_0,set_difference(esk25_0,esk27_0)) = esk27_0,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40,c_0_39]),c_0_29])]) ).

cnf(c_0_52,plain,
    set_difference(X1,set_difference(X1,X2)) = set_difference(X2,set_difference(X2,X1)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_41,c_0_42]),c_0_42]) ).

fof(c_0_53,plain,
    ! [X13,X14] : set_union2(X13,X14) = set_union2(X14,X13),
    inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0]) ).

fof(c_0_54,lemma,
    ! [X216,X217] : subset(set_difference(X216,X217),X216),
    inference(variable_rename,[status(thm)],[t36_xboole_1]) ).

cnf(c_0_55,lemma,
    ( disjoint(X1,X2)
    | in(esk28_2(X1,X2),set_intersection2(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_43]) ).

cnf(c_0_56,plain,
    set_difference(X1,set_difference(X1,empty_set)) = empty_set,
    inference(rw,[status(thm)],[c_0_44,c_0_42]) ).

cnf(c_0_57,plain,
    set_difference(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[c_0_45]) ).

cnf(c_0_58,plain,
    ( X1 != empty_set
    | ~ in(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_46]) ).

cnf(c_0_59,lemma,
    set_difference(set_union2(X1,X2),X2) = set_difference(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_47]) ).

cnf(c_0_60,lemma,
    ( set_union2(X1,X2) = set_difference(X2,X1)
    | ~ subset(X1,set_difference(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_48,c_0_49]) ).

cnf(c_0_61,negated_conjecture,
    set_difference(esk27_0,set_difference(esk27_0,esk25_0)) = esk27_0,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_28,c_0_50]),c_0_51]),c_0_52]) ).

cnf(c_0_62,plain,
    set_union2(X1,X2) = set_union2(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_53]) ).

cnf(c_0_63,lemma,
    subset(set_difference(X1,X2),X1),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

fof(c_0_64,plain,
    ! [X165,X166] :
      ( ~ disjoint(X165,X166)
      | disjoint(X166,X165) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])]) ).

cnf(c_0_65,lemma,
    ( disjoint(X1,X2)
    | in(esk28_2(X1,X2),set_difference(X1,set_difference(X1,X2))) ),
    inference(rw,[status(thm)],[c_0_55,c_0_42]) ).

cnf(c_0_66,plain,
    set_difference(X1,X1) = empty_set,
    inference(rw,[status(thm)],[c_0_56,c_0_57]) ).

cnf(c_0_67,plain,
    ~ in(X1,empty_set),
    inference(er,[status(thm)],[c_0_58]) ).

cnf(c_0_68,lemma,
    ( ~ in(X1,set_intersection2(X2,X3))
    | ~ disjoint(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_43]) ).

cnf(c_0_69,lemma,
    set_difference(set_union2(X1,X2),set_difference(X2,X1)) = set_difference(X1,set_difference(X2,X1)),
    inference(spm,[status(thm)],[c_0_59,c_0_48]) ).

cnf(c_0_70,negated_conjecture,
    set_union2(esk27_0,set_difference(esk27_0,esk25_0)) = esk27_0,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_60,c_0_61]),c_0_62]),c_0_63])]) ).

cnf(c_0_71,plain,
    ( disjoint(X2,X1)
    | ~ disjoint(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_64]) ).

cnf(c_0_72,lemma,
    disjoint(esk27_0,set_difference(esk27_0,esk25_0)),
    inference(sr,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_65,c_0_61]),c_0_66]),c_0_67]) ).

cnf(c_0_73,lemma,
    ( ~ disjoint(X2,X3)
    | ~ in(X1,set_difference(X2,set_difference(X2,X3))) ),
    inference(rw,[status(thm)],[c_0_68,c_0_42]) ).

cnf(c_0_74,negated_conjecture,
    set_difference(set_difference(esk27_0,esk25_0),esk27_0) = empty_set,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_69,c_0_61]),c_0_62]),c_0_70]),c_0_66]) ).

cnf(c_0_75,lemma,
    disjoint(set_difference(esk27_0,esk25_0),esk27_0),
    inference(spm,[status(thm)],[c_0_71,c_0_72]) ).

cnf(c_0_76,lemma,
    ~ in(X1,set_difference(esk27_0,esk25_0)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_73,c_0_74]),c_0_75]),c_0_57])]) ).

cnf(c_0_77,plain,
    ( in(esk2_1(X1),X1)
    | X1 = empty_set ),
    inference(split_conjunct,[status(thm)],[c_0_46]) ).

fof(c_0_78,plain,
    ! [X195] : set_union2(X195,empty_set) = X195,
    inference(variable_rename,[status(thm)],[t1_boole]) ).

fof(c_0_79,plain,
    ! [X113,X114] :
      ( ( ~ disjoint(X113,X114)
        | set_intersection2(X113,X114) = empty_set )
      & ( set_intersection2(X113,X114) != empty_set
        | disjoint(X113,X114) ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d7_xboole_0])]) ).

cnf(c_0_80,lemma,
    set_difference(esk27_0,esk25_0) = empty_set,
    inference(spm,[status(thm)],[c_0_76,c_0_77]) ).

cnf(c_0_81,plain,
    set_union2(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[c_0_78]) ).

cnf(c_0_82,plain,
    ( disjoint(X1,X2)
    | set_intersection2(X1,X2) != empty_set ),
    inference(split_conjunct,[status(thm)],[c_0_79]) ).

cnf(c_0_83,lemma,
    set_union2(esk27_0,esk25_0) = esk25_0,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48,c_0_80]),c_0_81]),c_0_62]) ).

cnf(c_0_84,plain,
    ( disjoint(X1,X2)
    | set_difference(X1,set_difference(X1,X2)) != empty_set ),
    inference(rw,[status(thm)],[c_0_82,c_0_42]) ).

cnf(c_0_85,lemma,
    set_difference(esk27_0,set_difference(esk25_0,esk27_0)) = esk27_0,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_69,c_0_83]),c_0_52]),c_0_80]),c_0_57]) ).

fof(c_0_86,lemma,
    ! [X257,X258,X259] :
      ( ~ subset(X257,X258)
      | ~ disjoint(X258,X259)
      | disjoint(X257,X259) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t63_xboole_1])]) ).

cnf(c_0_87,lemma,
    disjoint(esk27_0,set_difference(esk25_0,esk27_0)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_84,c_0_85]),c_0_66])]) ).

fof(c_0_88,lemma,
    ! [X270,X271] :
      ( ( ~ disjoint(X270,X271)
        | set_difference(X270,X271) = X270 )
      & ( set_difference(X270,X271) != X270
        | disjoint(X270,X271) ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t83_xboole_1])]) ).

cnf(c_0_89,negated_conjecture,
    ( disjoint(esk26_0,esk27_0)
    | subset(esk26_0,subset_complement(esk25_0,esk27_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

cnf(c_0_90,negated_conjecture,
    ( ~ disjoint(esk26_0,esk27_0)
    | ~ subset(esk26_0,subset_complement(esk25_0,esk27_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

cnf(c_0_91,lemma,
    ( disjoint(X1,X3)
    | ~ subset(X1,X2)
    | ~ disjoint(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_86]) ).

cnf(c_0_92,lemma,
    disjoint(set_difference(esk25_0,esk27_0),esk27_0),
    inference(spm,[status(thm)],[c_0_71,c_0_87]) ).

fof(c_0_93,plain,
    ! [X1,X2] :
      ( ( ~ empty(X1)
       => ( element(X2,X1)
        <=> in(X2,X1) ) )
      & ( empty(X1)
       => ( element(X2,X1)
        <=> empty(X2) ) ) ),
    inference(fof_simplification,[status(thm)],[d2_subset_1]) ).

fof(c_0_94,plain,
    ! [X1] : ~ empty(powerset(X1)),
    inference(fof_simplification,[status(thm)],[fc1_subset_1]) ).

cnf(c_0_95,lemma,
    ( set_difference(X1,X2) = X1
    | ~ disjoint(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_88]) ).

cnf(c_0_96,negated_conjecture,
    ( disjoint(esk26_0,esk27_0)
    | subset(esk26_0,set_difference(esk25_0,esk27_0)) ),
    inference(rw,[status(thm)],[c_0_89,c_0_39]) ).

cnf(c_0_97,negated_conjecture,
    ( ~ disjoint(esk26_0,esk27_0)
    | ~ subset(esk26_0,set_difference(esk25_0,esk27_0)) ),
    inference(rw,[status(thm)],[c_0_90,c_0_39]) ).

cnf(c_0_98,lemma,
    ( disjoint(X1,esk27_0)
    | ~ subset(X1,set_difference(esk25_0,esk27_0)) ),
    inference(spm,[status(thm)],[c_0_91,c_0_92]) ).

fof(c_0_99,plain,
    ! [X30,X31,X32,X33,X34,X35] :
      ( ( ~ in(X32,X31)
        | subset(X32,X30)
        | X31 != powerset(X30) )
      & ( ~ subset(X33,X30)
        | in(X33,X31)
        | X31 != powerset(X30) )
      & ( ~ in(esk3_2(X34,X35),X35)
        | ~ subset(esk3_2(X34,X35),X34)
        | X35 = powerset(X34) )
      & ( in(esk3_2(X34,X35),X35)
        | subset(esk3_2(X34,X35),X34)
        | X35 = powerset(X34) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d1_zfmisc_1])])])])])]) ).

fof(c_0_100,plain,
    ! [X37,X38] :
      ( ( ~ element(X38,X37)
        | in(X38,X37)
        | empty(X37) )
      & ( ~ in(X38,X37)
        | element(X38,X37)
        | empty(X37) )
      & ( ~ element(X38,X37)
        | empty(X38)
        | ~ empty(X37) )
      & ( ~ empty(X38)
        | element(X38,X37)
        | ~ empty(X37) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_93])])]) ).

fof(c_0_101,plain,
    ! [X121] : ~ empty(powerset(X121)),
    inference(variable_rename,[status(thm)],[c_0_94]) ).

fof(c_0_102,lemma,
    ! [X209,X210,X211] :
      ( ~ subset(X209,X210)
      | subset(set_difference(X209,X211),set_difference(X210,X211)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t33_xboole_1])]) ).

cnf(c_0_103,lemma,
    ( set_difference(esk26_0,esk27_0) = esk26_0
    | subset(esk26_0,set_difference(esk25_0,esk27_0)) ),
    inference(spm,[status(thm)],[c_0_95,c_0_96]) ).

cnf(c_0_104,negated_conjecture,
    ~ subset(esk26_0,set_difference(esk25_0,esk27_0)),
    inference(spm,[status(thm)],[c_0_97,c_0_98]) ).

cnf(c_0_105,plain,
    ( subset(X1,X3)
    | ~ in(X1,X2)
    | X2 != powerset(X3) ),
    inference(split_conjunct,[status(thm)],[c_0_99]) ).

cnf(c_0_106,plain,
    ( in(X1,X2)
    | empty(X2)
    | ~ element(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_100]) ).

cnf(c_0_107,negated_conjecture,
    element(esk26_0,powerset(esk25_0)),
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

cnf(c_0_108,plain,
    ~ empty(powerset(X1)),
    inference(split_conjunct,[status(thm)],[c_0_101]) ).

cnf(c_0_109,lemma,
    ( subset(set_difference(X1,X3),set_difference(X2,X3))
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_102]) ).

cnf(c_0_110,lemma,
    set_difference(esk26_0,esk27_0) = esk26_0,
    inference(sr,[status(thm)],[c_0_103,c_0_104]) ).

cnf(c_0_111,plain,
    ( subset(X1,X2)
    | ~ in(X1,powerset(X2)) ),
    inference(er,[status(thm)],[c_0_105]) ).

cnf(c_0_112,negated_conjecture,
    in(esk26_0,powerset(esk25_0)),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_106,c_0_107]),c_0_108]) ).

cnf(c_0_113,lemma,
    ( subset(esk26_0,set_difference(X1,esk27_0))
    | ~ subset(esk26_0,X1) ),
    inference(spm,[status(thm)],[c_0_109,c_0_110]) ).

cnf(c_0_114,negated_conjecture,
    subset(esk26_0,esk25_0),
    inference(spm,[status(thm)],[c_0_111,c_0_112]) ).

cnf(c_0_115,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_104,c_0_113]),c_0_114])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.10  % Problem    : SEU170+2 : TPTP v8.1.2. Released v3.3.0.
% 0.07/0.11  % Command    : run_E %s %d THM
% 0.11/0.31  % Computer : n001.cluster.edu
% 0.11/0.31  % Model    : x86_64 x86_64
% 0.11/0.31  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.31  % Memory   : 8042.1875MB
% 0.11/0.31  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.31  % CPULimit   : 2400
% 0.11/0.31  % WCLimit    : 300
% 0.11/0.31  % DateTime   : Mon Oct  2 08:41:21 EDT 2023
% 0.11/0.31  % CPUTime    : 
% 0.16/0.42  Running first-order theorem proving
% 0.16/0.42  Running: /export/starexec/sandbox2/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --auto-schedule=8 --cpu-limit=300 /export/starexec/sandbox2/tmp/tmp.tUCWyZaNpN/E---3.1_13454.p
% 3.47/0.89  # Version: 3.1pre001
% 3.47/0.89  # Preprocessing class: FSLSSMSSSSSNFFN.
% 3.47/0.89  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 3.47/0.89  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 3.47/0.89  # Starting new_bool_3 with 300s (1) cores
% 3.47/0.89  # Starting new_bool_1 with 300s (1) cores
% 3.47/0.89  # Starting sh5l with 300s (1) cores
% 3.47/0.89  # G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with pid 13568 completed with status 0
% 3.47/0.89  # Result found by G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S
% 3.47/0.89  # Preprocessing class: FSLSSMSSSSSNFFN.
% 3.47/0.89  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 3.47/0.89  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 3.47/0.89  # No SInE strategy applied
% 3.47/0.89  # Search class: FGHSM-FSLM32-MFFFFFNN
% 3.47/0.89  # Scheduled 12 strats onto 5 cores with 1500 seconds (1500 total)
% 3.47/0.89  # Starting G-E--_303_C18_F1_URBAN_S0Y with 123s (1) cores
% 3.47/0.89  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 151s (1) cores
% 3.47/0.89  # Starting U----_100_C09_12_F1_SE_CS_SP_PS_S5PRR_RG_ND_S04AN with 123s (1) cores
% 3.47/0.89  # Starting G-E--_208_C18_F1_SE_CS_SP_PI_PS_S5PRR_S032N with 123s (1) cores
% 3.47/0.89  # Starting G-E--_207_C18_F1_AE_CS_SP_PI_PS_S0i with 123s (1) cores
% 3.47/0.89  # G-E--_208_C18_F1_SE_CS_SP_PI_PS_S5PRR_S032N with pid 13578 completed with status 0
% 3.47/0.89  # Result found by G-E--_208_C18_F1_SE_CS_SP_PI_PS_S5PRR_S032N
% 3.47/0.89  # Preprocessing class: FSLSSMSSSSSNFFN.
% 3.47/0.89  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 3.47/0.89  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 3.47/0.89  # No SInE strategy applied
% 3.47/0.89  # Search class: FGHSM-FSLM32-MFFFFFNN
% 3.47/0.89  # Scheduled 12 strats onto 5 cores with 1500 seconds (1500 total)
% 3.47/0.89  # Starting G-E--_303_C18_F1_URBAN_S0Y with 123s (1) cores
% 3.47/0.89  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 151s (1) cores
% 3.47/0.89  # Starting U----_100_C09_12_F1_SE_CS_SP_PS_S5PRR_RG_ND_S04AN with 123s (1) cores
% 3.47/0.89  # Starting G-E--_208_C18_F1_SE_CS_SP_PI_PS_S5PRR_S032N with 123s (1) cores
% 3.47/0.89  # Preprocessing time       : 0.002 s
% 3.47/0.89  # Presaturation interreduction done
% 3.47/0.89  
% 3.47/0.89  # Proof found!
% 3.47/0.89  # SZS status Theorem
% 3.47/0.89  # SZS output start CNFRefutation
% See solution above
% 3.47/0.89  # Parsed axioms                        : 110
% 3.47/0.89  # Removed by relevancy pruning/SinE    : 0
% 3.47/0.89  # Initial clauses                      : 193
% 3.47/0.89  # Removed in clause preprocessing      : 14
% 3.47/0.89  # Initial clauses in saturation        : 179
% 3.47/0.89  # Processed clauses                    : 4143
% 3.47/0.89  # ...of these trivial                  : 57
% 3.47/0.89  # ...subsumed                          : 2872
% 3.47/0.89  # ...remaining for further processing  : 1214
% 3.47/0.89  # Other redundant clauses eliminated   : 172
% 3.47/0.89  # Clauses deleted for lack of memory   : 0
% 3.47/0.89  # Backward-subsumed                    : 121
% 3.47/0.89  # Backward-rewritten                   : 48
% 3.47/0.89  # Generated clauses                    : 19330
% 3.47/0.89  # ...of the previous two non-redundant : 16908
% 3.47/0.89  # ...aggressively subsumed             : 0
% 3.47/0.89  # Contextual simplify-reflections      : 6
% 3.47/0.89  # Paramodulations                      : 19120
% 3.47/0.89  # Factorizations                       : 31
% 3.47/0.89  # NegExts                              : 0
% 3.47/0.89  # Equation resolutions                 : 179
% 3.47/0.89  # Total rewrite steps                  : 7157
% 3.47/0.89  # Propositional unsat checks           : 0
% 3.47/0.89  #    Propositional check models        : 0
% 3.47/0.89  #    Propositional check unsatisfiable : 0
% 3.47/0.89  #    Propositional clauses             : 0
% 3.47/0.89  #    Propositional clauses after purity: 0
% 3.47/0.89  #    Propositional unsat core size     : 0
% 3.47/0.89  #    Propositional preprocessing time  : 0.000
% 3.47/0.89  #    Propositional encoding time       : 0.000
% 3.47/0.89  #    Propositional solver time         : 0.000
% 3.47/0.89  #    Success case prop preproc time    : 0.000
% 3.47/0.89  #    Success case prop encoding time   : 0.000
% 3.47/0.89  #    Success case prop solver time     : 0.000
% 3.47/0.89  # Current number of processed clauses  : 855
% 3.47/0.89  #    Positive orientable unit clauses  : 97
% 3.47/0.89  #    Positive unorientable unit clauses: 4
% 3.47/0.89  #    Negative unit clauses             : 263
% 3.47/0.89  #    Non-unit-clauses                  : 491
% 3.47/0.89  # Current number of unprocessed clauses: 12822
% 3.47/0.89  # ...number of literals in the above   : 37944
% 3.47/0.89  # Current number of archived formulas  : 0
% 3.47/0.89  # Current number of archived clauses   : 331
% 3.47/0.89  # Clause-clause subsumption calls (NU) : 59737
% 3.47/0.89  # Rec. Clause-clause subsumption calls : 42087
% 3.47/0.89  # Non-unit clause-clause subsumptions  : 757
% 3.47/0.89  # Unit Clause-clause subsumption calls : 25162
% 3.47/0.89  # Rewrite failures with RHS unbound    : 0
% 3.47/0.89  # BW rewrite match attempts            : 135
% 3.47/0.89  # BW rewrite match successes           : 81
% 3.47/0.89  # Condensation attempts                : 0
% 3.47/0.89  # Condensation successes               : 0
% 3.47/0.89  # Termbank termtop insertions          : 207394
% 3.47/0.89  
% 3.47/0.89  # -------------------------------------------------
% 3.47/0.89  # User time                : 0.346 s
% 3.47/0.89  # System time              : 0.010 s
% 3.47/0.89  # Total time               : 0.356 s
% 3.47/0.89  # Maximum resident set size: 2372 pages
% 3.47/0.89  
% 3.47/0.89  # -------------------------------------------------
% 3.47/0.89  # User time                : 2.073 s
% 3.47/0.89  # System time              : 0.064 s
% 3.47/0.89  # Total time               : 2.137 s
% 3.47/0.89  # Maximum resident set size: 1772 pages
% 3.47/0.89  % E---3.1 exiting
% 3.47/0.89  % E---3.1 exiting
%------------------------------------------------------------------------------